Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-24T16:35:35.603Z Has data issue: false hasContentIssue false

From river valley to estuary: the evolution of the Rhine mouth in the early to middle Holocene (western Netherlands, Rhine-Meuse delta)

Published online by Cambridge University Press:  24 March 2014

M.P. Hijma*
Affiliation:
Department of Physical Geography, Faculty of Geosciences, Utrecht University, P.O. Box 80.115, 3508 TC Utrecht, the Netherlands Utrecht Centre of Geosciences, Budapestlaan 4, 3584 CD Utrecht, the Netherlands Deltares, P.O. Box 85.467, 3508 TC Utrecht, the Netherlands
K.M. Cohen
Affiliation:
Department of Physical Geography, Faculty of Geosciences, Utrecht University, P.O. Box 80.115, 3508 TC Utrecht, the Netherlands Utrecht Centre of Geosciences, Budapestlaan 4, 3584 CD Utrecht, the Netherlands Deltares, P.O. Box 85.467, 3508 TC Utrecht, the Netherlands
G. Hoffmann
Affiliation:
German University of Technology, P.O. Box 1.816, Athaibah PC 130, Muscat, Sultanate of Oman
A.J.F. Van der Spek
Affiliation:
Deltares, P.O. Box 85.467, 3508 TC Utrecht, the Netherlands NCK / TU Delft, P.O. Box 5.048, 2600 GA Delft, the Netherlands
E. Stouthamer
Affiliation:
Department of Physical Geography, Faculty of Geosciences, Utrecht University, P.O. Box 80.115, 3508 TC Utrecht, the Netherlands

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The aim of this paper is to reconstruct the evolution of the early to middle Holocene Rhine-Meuse river mouths in the western Netherlands and to understand the observed spatial and temporal changes in facies. This is achieved by constructing three delta wide cross-sections using a newly accumulated database with thousands of core descriptions and cone penetration test results, together with a large set of pollen/diatom analyses and OSL/14C-dates. Most of the studied deposits accumulated in the fluvial-to-marine transition zone, a highly complex area due to the interaction of terrestrial and marine processes. Understanding how the facies change within this zone, is necessary to make correct palaeogeographic interpretations.

We find a well preserved early to middle Holocene coastal prism resting on lowstand valley floors. Aggradation started after 9 ka cal BP as a result of rapid sea-level rise. Around 8 ka most parts of the study area were permanently flooded and under tidal influence. After 8 ka a bay-head delta was formed near Delft, meaning that little sand could reach the North Sea. Several subsequent avulsions resulted in a shift from the constantly retreating Rhine river mouth to the north. When after 6.5 ka the most northerly river course was formed (Oude Rijn), the central part of the palaeovalley was quickly transgressed and transformed into a large tidal basin. Shortly before 6 ka retrogradation of the coastline halted and tidal inlets began to close, marking the end of the early-middle Holocene transgression.

This paper describes the transition from a fluvial valley to an estuary in unprecedented detail and enables more precise palaeo-reconstructions, evaluation of relative importance of fluvial and coastal processes in rapid transgressed river mouths, and more accurate sediment-budget calculations. The described and well illustrated (changes in) facies are coupled to lithogenetic units. This will aid detailed palaeogeographic interpretations from sedimentary successions, not only in the Netherlands, but also in other estuarine and deltaic regions.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2009

References

Allen, J.R.L., 1990. The Severn Estuary in southwest Britain: its retreat under marine ingression, and fine-sediment regime. Sedimentary Geology 66: 1328.Google Scholar
Ardies, G.W., Dalrymple, R.W. & Zaitlin, B.A., 2002. Controls on the geometry of incised valleys in the basal quartz unit (Lower Cretaceous), western Canada sedimentary basin. Journal of Sedimentary Research 72 (5): 602618.Google Scholar
Autin, W.J., 2008. Stratigraphic analysis and paleoenvironmental implications of the Wijchen Member in the lower Rhine-Meuse valley of the Netherlands. Netherlands Journal of Geosciences - Geologie en Mijnbouw 87 (4): 291307.CrossRefGoogle Scholar
Ballarini, M., Wallinga, J., Wintle, A.G. & Bos, A.J.J., 2007. A modified SAR protocol for optical dating of individual grains from young quartz samples. Radiation Measurements 42 (3): 360369.CrossRefGoogle Scholar
Beets, D.J. & Van der Spek, A.J.F., 2000. The Holocene evolution of the barrier and the back-barrier basins of the Belgium and the Netherlands as a function of late Weichselian morphology, relative sea-level rise and sediment supply. Netherlands Journal of Geosciences – Geologie en Mijnbouw 79: 316.CrossRefGoogle Scholar
Beets, D.J., Van der Valk, L. & Stive, M.J., 1992. Holocene evolution of the coast of Holland. Marine Geology 103: 423444.Google Scholar
Berendsen, H.J.A., 2005. De Laaglandgenese Databank. Department of Physical Geography, Faculty of Geosciences, Utrecht University.Google Scholar
Berendsen, H.J.A., Cohen, K.M. & Stouthamer, E., 2007. The use of GIS in reconstructing the Holocene palaeogeography of the Rhine-Meuse delta, the Netherlands. International Journal of Geographical Information Science 21 (5): 589602.CrossRefGoogle Scholar
Berendsen, H.J.A., Hoek, W.Z. & Schorn, E.A., 1995. Late Weichselian and Holocene river channel changes of the rivers Rhine and Meuse in the central Netherlands (Land van Maas en Waal). In: Frenzel, B. (ed.): European river activity and climate change during the Lateglacial and Early Holocene. ESF Project European Paläoklimaforschung / Paleoclimate Research, Special Issue 151171.Google Scholar
Berendsen, H.J.A. & Stouthamer, E., 2000. Late Weichselian and Holocene palaeogeography of the Rhine-Meuse delta, the Netherlands. Palaeogeography, Palaeoclimatology, Palaeoecology 161 (3–4): 311335.Google Scholar
Berendsen, H.J.A. & Stouthamer, E., 2001. Palaeogeographic development of the Rhine-Meuse delta, the Netherlands. Koninklijke van Gorcum (Assen): 268 pp.Google Scholar
Berendsen, H.J.A. & Stouthamer, E., 2002. Paleogeographic evolution and avulsion history of the Holocene Rhine-Meuse delta, the Netherlands. Netherlands Journal of Geosciences - Geologie en Mijnbouw 81 (1): 97112.Google Scholar
Berendsen, H.J.A. & Volleberg, K.P., 2007. New prospects in geomorphological and geological mapping of the Rhine-Meuse Delta – Application of detailed digital elevation maps based on laser altimetry. Netherlands Journal of Geosciences - Geologie en Mijnbouw 86 (1): 1522.CrossRefGoogle Scholar
Bosch, J.H.A. & Kok, H., 1994. Toelichting bij de geologische kaart van Nederland 1: 50.000, Blad Gorinchem West (38 W), Rijks Geologische Dienst (Haarlem): 159 pp.Google Scholar
Boyd, R., Dalrymple, R.W. & Zaitlin, B.A., 2006. Estuarine and incised-valley facies models. In: Posamentier, H.W. and Walker, R.G. (eds): Facies models revisited. SEPM Special Publication, 84. SEPM (Tulsa, Oklahoma, U.S.A.): 171235.CrossRefGoogle Scholar
Bronk Ramsey, C., 1995. Radiocarbon calibration and analysis of stratigraphy: The OxCal program. Radiocarbon 37 (2): 425430.Google Scholar
Bronk Ramsey, C., 2001. Development of the radiocarbon calibration program OxCal. Radiocarbon 43 (2A): 355363.CrossRefGoogle Scholar
Busschers, F.S., Kasse, C., Van Balen, R.T., Vandenberghe, J., Cohen, K.M., Weerts, H.J.T., Wallinga, J., Johns, C., Cleveringa, P. & Bunnik, F.P.M., 2007. Late Pleistocene evolution of the Rhine-Meuse system in the southern North Sea basin: imprints of climate change, sea-level oscillation and glacioisostacy. Quaternary Science Reviews 26 (25–28): 32163248.Google Scholar
Busschers, F.S., Van Balen, R.T., Cohen, K.M., Kasse, C., Weerts, H.J.T., Wallinga, J. & Bunnik, F.P.M., 2008. Response of the Rhine-Meuse fluvial system to Saalian ice-sheet dynamics. Boreas 0 (0): ???-???Google Scholar
Busschers, F.S., Weerts, H.J.T., Wallinga, J., Cleveringa, P., Kasse, C., De Wolf, H. & Cohen, K.M., 2005. Sedimentary architecture and optical dating of Middle and Late Pleistocene Rhine-Meuse deposits – fluvial response to climate change, sea-level fluctuation and glaciation. Netherlands Journal of Geosciences – Geologie en Mijnbouw 84: 2541.CrossRefGoogle Scholar
Chambers, R.M., Meyerson, L.A. & Saltonstall, K., 1999. Expansion of Phragmites australis into tidal wetlands of North America. Aquatic Botany 64 (3–4): 261273.Google Scholar
Cleveringa, J., 2000. Reconstruction and modelling of Holocene coastal evolution of the western Netherlands. Ph.D.-thesis, Utrecht University: 197 pp.Google Scholar
Coerts, A., 1996. Analysis of static cone penetration test data for subsurface modelling – a methodology. Ph.D.-thesis, Utrecht University (Utrecht): 263 pp.Google Scholar
Cohen, K.M., 2003. Differential subsidence within a coastal prism. Late-Glacial – Holocene tectonics in the Rhine-Meuse delta, the Netherlands. Ph.D.-thesis, Utrecht University: 176 pp.Google Scholar
Cohen, K.M., 2005. 3D geostatistical interpolation and geological interpolation of palaeo-groundwaterrise within the coastal prism in the Netherlands. In: Giosan, L. and Bhattacharaya, J.P. (eds): River Deltas: Concepts, models, and examples SEPM (Society for Sedimentary Geology) (Tulsa, Oklahoma): 341364.Google Scholar
Cohen, K.M. & Hijma, M.P., 2008. Het Rijnmond gebied in het vroeg-Holoceen: inzichten uit een diepe put bij Blijdorp (Rotterdam). Grondboor en Hamer 3/4: 6471 (in Dutch).Google Scholar
Cremer, H., Wagner, B., Melles, M. & Hubberten, H.-W., 2001. The postglacial environmental development of Raffles Sø, East Greenland: inferences from a 10,000 year diatom record. Journal of Paleolimnology 26: 6787.Google Scholar
Dalrymple, R.W., Boyd, R. & Zaitlin, B.A. (eds), 1994. Incised-valley systems: origin and sedimentary sequences. Spec. Publ. Soc. Sedim. Geol. 51, Tulsa: 391.Google Scholar
Dalrymple, R.W. & Choi, K., 2007. Morphologic and facies trends through the fluvial-marine transition in tide-dominated depositional systems: A schematic framework for environmental and sequence-stratigraphic interpretation. Earth-Science Reviews 81 (3–4): 135174.CrossRefGoogle Scholar
Dalrymple, R.W., Zaitlin, B.A. & Boyd, R., 1992. Estuarine facies models: conceptual basis and stratigraphic implications. Journal of Sedimentary Research 62: 11301146.CrossRefGoogle Scholar
De Groot, T.A.M. & De Gans, W., 1996. Facies variations and sea-level response in the lower Rhine-Meuse area during the last 15000 years (the Netherlands). In: Beets, D.J., Fischer, M.M. and De Gans, W. (eds): Coastal studies on the Holocene of the Netherlands. Mededelingen Rijks Geologische Dienst. Rijks Geologische Dienst (Haarlem): 229250.Google Scholar
De Wolf, H., 2002. Personal communication, Geological Survey of the Netherlands, Utrecht.Google Scholar
Den Held, A., Schmitz, M. & Van Wirdum, G., 1992. Types of terrestrializing fen vegetation in the Netherlands. In: Verhoeven, J.T.A. (ed.): Fens and bogs in the Netherlands: vegetation, history, nutrient dynamics and conservation. Geobotany. Kluwer Academics Publishers (Dordrecht): 237321.Google Scholar
Faegri, K. & Iversen, J., 1975. Textbook of Pollen Analysis. 3rd edition, Munksgaard (Copenhagen): 295 pp.Google Scholar
Fagel, N., Alleman, L.Y., Granina, L., Hatert, F., Thamo-Bozso, E., Cloots, R. & Andre, L., 2005. Vivianite formation and distribution in Lake Baikal sediments. Global and Planetary Change 46 (1–4): 315336.CrossRefGoogle Scholar
Fairbanks, R.G., 1989. A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342: 637642.Google Scholar
Frouin, M., Sebag, D., Durand, A., Laignel, B., Saliege, J.-F., Mahler, B.J. & Fauchard, C., 2007. Influence of paleotopography, base level and sedimentation rate on estuarine system response to the Holocene sea-level rise: the example of the Marais Vernier, Seine estuary, France. Sedimentary Geology 200 (1–2): 1529.Google Scholar
Galbraith, R.F. & Green, P.F., 1990. Estimating the component ages in a finite mixture. Nuclear Tracks and Radiation Measurements 17: 197206.CrossRefGoogle Scholar
Gibbard, P.L., Rose, J. & Bridgland, D.R., 1988. The History of the Great Northwest European Rivers During the Past Three Million Years (and Discussion]. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 318 (1191): 559602.Google Scholar
Gouw, M.J.P., 2002. Toelichting op het Geologisch Profiel Zwijndrechtse Waard en Hoekse Waard, Projectgroep Archeologie HSL-Zuid/A16, RWS/RACM (Amersfoort): 29 (in Dutch) pp.Google Scholar
Gouw, M.J.P., 2007. Alluvial architecture of fluvio-deltaic successions: a review with special reference to Holocene settings. Netherlands Journal of Geosciences – Geologie en Mijnbouw 86 (3): 211228.CrossRefGoogle Scholar
Gouw, M.J.P. & Erkens, G., 2007. Architecture of the Holocene Rhine-Meuse delta (the Netherlands) – A result of changing external controls. Netherlands Journal of Geosciences – Geologie en Mijnbouw 86 (1): 2354.CrossRefGoogle Scholar
Gupta, S., Collier, J.S., Palmer-Felgate, A. & Potter, G., 2007. Catastrophic flooding origin of shelf valley systems in the English Channel. Nature 448 (7151): 342345.Google Scholar
Hijma, M.P. & Cohen, K.M., in prep. Timing and magnitude of the sea-level jump preluding the 8,200 yr event.Google Scholar
Hoek, W.Z., 2001. Vegetation response to the ~14.7 and ~11.5 ka cal. BP climate transitions: is vegetation lagging climate? Global and Planetary Change 30 (1–2): 103115.Google Scholar
Hoek, W.Z., 2008. The Last Glacial-Interglacial Transition. Episodes 31 (2): 226229.Google Scholar
Jelgersma, S., 1961. Holocene sea-level changes in the Netherlands. Mededelingen Geologische Stichting 7: 1101.Google Scholar
Kiden, P., Denys, L. & Johnston, P., 2002. Late Quaternary sea-level change and isostatic and tectonic land movement along the Belgian-Dutch North Sea coast: geological data and model results. Journal of Quaternary Science 17: 535546.Google Scholar
Kooi, H., Johnston, P., Lambeck, K., Smither, C. & Ronald, M., 1998. Geological causes of recent (~100 yr) vertical land movement in the Netherlands. Tectonophysics 299 (4): 297316.Google Scholar
Lambeck, K., Smither, S. & Johnston, P., 1998. Sea-level change, glacial rebound and mantle viscosity for Northern Europe. Geophys. J. Int. 134: 102144.Google Scholar
Makaske, B., 2001. Anastomosing rivers: a review of their classification, origin and sedimentary products. Earth-Science Reviews 53 (3–4): 149196.Google Scholar
Marshall, J.D., Lang, B., Crowley, S.F., Weedon, G.P., Van Calsteren, P., Fisher, E.H., Holme, R., Holmes, J.A., Jones, R.T., Bedford, A., Brooks, S.J., Bloemendal, J., Kiriakoulakis, K. & Ball, J.D., 2007. Terrestrial impact of abrupt changes in the North Atlantic thermohaline circulation: Early Holocene, UK&#8224. Geology 35 (7): 639642.Google Scholar
Murray, A.S. & Wintle, A.G., 2003. The single aliquot regenerative dose protocol: potential for improvements in reliability. Radiation Measurements 37 (4–5): 377381.Google Scholar
Oele, E., Apon, W., Fischer, M.M., Hoogendoorn, R., Mesdag, C.S., De Mulder, E.F.J., Overzee, B., Sesӧren, A. & Westerhoff, W.E., 1983. Surveying the Netherlands, Sampling Techniques, Maps and their application. Geologie en Mijnbouw 62: 355372.Google Scholar
Peltier, W.R., 2002. On eustatic sea level history: Last Glacial Maximum to Holocene. Quaternary Science Reviews 21 (1–3): 377396.Google Scholar
Peltier, W.R., 2004. Global glacial isostasy and the surface of the ice-age earth: the ICE-5G (VM2) model and grace. Annual Review of Earth and Planetary Science 32: 111149.Google Scholar
Pons, L.J., 1954. Het fluviatiele laagterras van Rijn en Maas. Boor en spade 7: 97110 (in Dutch).Google Scholar
Pons, L.J., 1957. De geologie, bodemvorming en de waterstaatkundige ontwikkeling van het Land van Maas en Waal en een gedeelte van het Rijk van Nijmegen. Ph.D.-thesis, Wageningen University (Wageningen): 156 pp. (In Dutch, with English summary).Google Scholar
Pons, L.J. & Bennema, J., 1958. De morfologie van het Pleistocene oppervlak in westelijk Midden-Nederland, voor zover gelegen beneden gemiddeld zeeniveau (N.A.P.). Tijdschrift van het Koninklijk Nederlandsch Aardrijkskundig Genootschap 75 (2): 121138 (in Dutch).Google Scholar
Pons, L.J., Jelgersma, S., Wiggers, A.J. & De Jong, J.D., 1963. Evolution of the Netherlands coastal area during the Holocene. In: De Jong, J.D. (ed.): Verhandelingen van het KNGMG: Transactions of the jubilee convention – part two. N.V. Boek- Kunstdrukkerij v/h Mouton &Co. ('s Gravenhage): 197207.Google Scholar
Rasmussen, S.O., Andersen, K.K., Svensson, A.M., Steffensen, J.P., Vinther, B.M., Clausen, H.B., Siggaard-Andersen, M.-L., Johnsen, S.J., Larsen, L.B., Dahl-Jensen, D., Bigler, M., Rӧthlisberger, R., Fischer, H., Goto-Azuma, K., Hansson, M.E. & Ruth, U., 2006. A new Greenland ice core chronology for the last glacial termination. Journal of Geophysical Research 111: D06102.Google Scholar
Rasmussen, S.O., Vinther, B.M., Clausen, H.B. & Andersen, K.K., 2007. Early Holocene climate oscillations recorded in three Greenland ice cores. Quaternary Science Reviews 26 (15–16): 19071914.CrossRefGoogle Scholar
Raven, J.G.M. & Kuijper, W.J., 1981. Calais Deposits (Holocene) near Benthuizen (Province of Zuid-Holland, the Netherlands), with a palaeoecological reconstruction. Meded. Werkgr. Tert. en Kwart. Geol. 18: 1128.Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Bertrand, C.J.H., Blackwell, P.G., Buck, C.E., Burr, G.S., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Hogg, A.G., Hughen, K.A., Kromer, B., McCormac, G., Manning, S., Bronk Ramsey, C., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., Talamo, S., Taylor, F.W., Van der Plicht, J. & Weyhenmeyer, C.E., 2004. INTCAL04 Terrestrial radiocarbon age calibration, 0 - 26 cal kyr BP. Radiocarbon 46 (3): 10291058.Google Scholar
Reinson, G.E. (ed.), 1992. Transgressive barrier island and estuarine systems. Facies Models - Response to Sea Level Change, Reprint Series 4: 179194.Google Scholar
Reynaud, J.-Y., Tessier, B., Proust, J.-N., Dalrymple, R.W., Bourillet, J.-F., De Batist, M., Lericolais, G., Berné, S. & Marsset, T., 1999. Architecture and sequence stratigraphy of a Late Neogene incised valley at the shelf margin, southern Celtic Sea. Journal of Sedimentary Research 69 (2): 351364.Google Scholar
Rieu, R., Van Heteren, S., Van der Spek, A.J.F. & De Boer, P.L., 2005. Development and Preservation of a Mid-Holocene Tidal-Channel Network Offshore the Western Netherlands. Journal of Sedimentary Research 75 (3): 409419.Google Scholar
Rijkswaterstaat-AGI, 2005. Actueel Hoogtebestand Nederland (AHN). Revised version. Rijkswaterstaat, Adviesdienst Geo-informatie en ICT, Delft.Google Scholar
Rodnight, H., Duller, G.A.T., Wintle, A.G. & Tooth, S., 2006. Assessing the reproducibility and accuracy of optical dating of fluvial deposits. Quaternary Geochronology 1 (2): 109120.Google Scholar
Roep, T.B., Holst, H., Vissers, R.L.M., Pagnier, H. & Postma, D., 1975. Deposits of southward-flowing, pleistocene rivers in the channel region, near Wissant, NW France. Palaeogeography, Palaeoclimatology, Palaeoecology 17 (4): 289308.Google Scholar
Schirmer, W., 1995. Valley bottoms in the Late Quaternary - der Talgrund in im jüngeren Quartär. Zeitschrift für Geomorphologie N.F. Supplement 100: 2751.Google Scholar
Silberhorn, G.M., 1999. Common plants of the Mid-Atlantic coast: a field guide. Revised edition. The John Hopkins University Press (Baltimore): 294 pp.Google Scholar
Smith, A.J., 1985. A catastrophic origin for the palaeovalley system of the eastern English Channel. Marine Geology 64 (1–2): 6575.Google Scholar
Stanley, D.J. & Warne, A.G., 1994. Worldwide initiation of Holocene marine deltas by deceleration of sea-level rise. Science 265: 228231.Google Scholar
Steffen, H., 2006. Determination of a consistent viscosity distribution in the earth's mantle beneath Northern and Central Europe. Ph.D.-thesis, Institut für Geologische Wissenschaften der Freie Universität Berlin (Berlin, Germany).Google Scholar
Stortelder, A.H.F., Hommel, P.W.F.M., De Waal, R.W., Van Dort, K.W., Vrielink, J.G. & Wolf, R.J.A.M., 1998. Broekbossen. Natuurhistorische bibliotheek 66. Stichting Uitgeverij van Koninklijke Nederlandse Natuurhistorische Vereniging (Utrecht). (In Dutch).Google Scholar
Stuiver, M., Pearson, G.W. & Braziunas, T.F., 1986. Radiocarbon Age Calibration of Marine Samples Back to 9000 cal yr BP. Radiocarbon 28 (2B): 9801021.Google Scholar
Terwindt, J.H.J., De Jong, J.D. & Van der Wilk, E., 1963. Sediment movement and sediment properties in the tidal area of the Lower Rhine (Rotterdam Waterway). Verhandelingen KNGMG 21 (2): 243258.Google Scholar
TNO, 2009. DINOloket (Internet Portal for Geo-Information), www.dinoloket.nl.Google Scholar
Törnqvist, T.E., 1993. Fluvial sedimentary geology and chronology of the Holocene Rhine-Meuse delta, the Netherlands. Ph.D.-thesis, Utrecht University: 169 pp.Google Scholar
Törnqvist, T.E., 1998. Longitudinal profile evolution of the Rhine-Meuse system during the last deglaciation: interplay of climate change and glacio-eustasy? Terra Nova 10 (1): 1115.Google Scholar
Törnqvist, T.E., De Jong, A.F.M., Oosterbaan, W.A. & Van der Borg, K., 1992. Accurate dating of organic deposits by AMS 14C measurement of macrofossils. Radiocarbon 34 (3): 566577.Google Scholar
Törnqvist, T.E., Weerts, H.J.T. & Berendsen, H.J.A., 1994. Definition of two new members in the upper Kreftenheye and Twente Formations (Quaternary, the Netherlands): a final solution to persistent confusion? Geologie en Mijnbouw 72: 251264.Google Scholar
Van Balen, R.T., Van Bergen, F., De Leeuw, C., Pagnier, H., Simmelink, H., Van Wees, J.D. & Verweij, J.M., 2000. Modelling the hydrocarbon generation and migration in the West Netherlands Basin, the Netherlands. Netherlands Journal of Geosciences - Geologie en Mijnbouw 79 (1): 2944.Google Scholar
Van de Plassche, O., 1982. Sea-level change and water-level movements in the Netherlands during the Holocene. Ph.D.-thesis, Vrije Universiteit (Amsterdam): 93 pp.Google Scholar
Van den Berg, J.H., Boersma, J.R. & Van Gelder, A., 2007. Diagnostic sedimentary structures of the fluvial-tidal transition zone – Evidence from deposits of the Rhine and Meuse. Netherlands Journal of Geosciences – Geologie en Mijnbouw 86 (3): 287306.Google Scholar
Van der Molen, J. & De Swart, H.E., 2001a. Holocene tidal conditions and tideinduced sand transport in the southern North Sea. Journal of Geophysical Research C 106: C5, 93399362.Google Scholar
Van der Molen, J. & De Swart, H.E., 2001b. Holocene wave conditions and wave-induced sand transport in the southern North Sea. Continental Shelf Research 21 (16–17): 17231749.CrossRefGoogle Scholar
Van der Molen, J. & Van Dijck, B., 2000. The evolution of the Dutch and Belgian coasts and the role of sand supply from the North Sea. Global and Planetary Change 27 (1–4): 223244.CrossRefGoogle Scholar
Van der Spek, A.J.F. & Beets, D.J., 1992. Mid-Holocene evolution of a tidal basin in the western Netherlands: a model for future changes in the northern Netherlands under conditions of accelerated sea-level rise? Sedimentary Geology 80 (3–4): 185197.Google Scholar
Van der Spek, A.J.F., Cleveringa, J. & Van Heteren, S., 2007. From transgression to regression: coastal evolution near The Hague, the Netherlands, around 5000 BP. In: Kraus, N.C. and Dean Rosati, J. (eds): Coastal sediments '07, Proceedings of the 6th International Symposium on Coastal Engineering and Science of Coastal Sediments Processes (New Orleans, Louisiana): 11291141.Google Scholar
Van der Valk, L., 1996. Geology and sedimentology of Late-Atlantic sandy, wave-dominated deposits near The Hague (South-Holland, the Netherlands): a reconstruction of an early prograding coastal sequence. In: Beets, D.J., Fischer, M.M. and De Gans, W. (eds): Coastal studies on the Holocene of the Netherlands. Mededelingen Rijks Geologische Dienst. Rijks Geologische Dienst (Haarlem): 201228.Google Scholar
Van der Woude, J.D., 1983. Holocene paleoenvironmental evolution of a perimarine fluviatile area - Geology and paleobotany of the area surrounding the archeological excavation at the Hazendonk river dune (western Netherlands). Analecta Praehistorica Leidensia XVI: 1124. Earlier appeared as Ph.D.-thesis (1981), Vrije Universiteit, Amsterdam.Google Scholar
Van Geel, B., Bohncke, S.J.P. & Dee, H., 1980/1981. A palaeoecological study of an upper late glacial and holocene sequence from ‘de borchert’, the Netherlands. Review of Palaeobotany and Palynology 31: 367392.Google Scholar
Van Heteren, S., Van der Spek, A.J.F. & De Groot, T.A.M., 2002. Architecture of a preserved Holocene tidal complex offshore the Rhine-Meuse mouth, the Netherlands. NITG 01-27-A, Netherlands Institute of Applied Geoscience TNO – National Geological Survey: 40 pp.Google Scholar
Van Huissteden, J. & Kasse, C., 2001. Detection of rapid climate change in Last Glacial fluvial successions in the Netherlands. Global and Planetary Change 28 (1–4): 319339.Google Scholar
Van Veen, J., 1936. Transport des sables par des courants dans les cours inférieurs des rivières, dans les estuaires néerlandais et dans la Mer du Nord. VI Assemblé générale de l'Ass. Int. d'hydrologie Scientifique (Edinburgh).Google Scholar
Vandenberghe, J., 1985. Paleoenvironment and stratigraphy during the last glacial in the Belgian-Dutch border region. Quaternary Research 24 (1): 2338.Google Scholar
Verbraeck, A., 1984. Toelichting bij de geologische kaart van Nederland 1: 50.000, Blad Tiel West (39 W) en Blad Tiel Oost (39 O), Rijks Geologische Dienst (Haarlem): 335 pp. (In Dutch).Google Scholar
Verbraeck, A. & Bisschops, J.H., 1971. Toelichting bij de geologische kaart van Nederland 1: 50.000, Blad Willemstad Oost (43 O), Rijks Geologische Dienst (Haarlem): 112 pp. (In Dutch).Google Scholar
Vink, A., Steffen, H., Reinhardt, L. & Kaufmann, G., 2007. Holocene relative sea-level change, isostatic subsidence and the radial viscosity structure of the mantle of northwest Europe (Belgium, the Netherlands, Germany, southern North Sea). Quaternary Science Reviews 26 (25–28): 32493275.Google Scholar
Von Grafenstein, U., Erlenkeuser, H., Brauer, A., Jouzel, J. & Johnsen, S.J., 1999. A Mid-European Decadal Isotope-Climate Record from 15,500 to 5000 Years B.P. Science 284 (5420): 16541657.CrossRefGoogle Scholar
Vos, P.C. & Van Heeringen, R.M., 1997. Holocene geology and occupation history of the Province of Zeeland. In: Fischer, M.M. (ed.): Holocene evolution of Zeeland (SW Netherlands). Mededelingen Rijks Geologische Dienst. Rijks Geologische Dienst (Haarlem): 5110.Google Scholar
Wallinga, J., 2002. Optically stimulated luminescence dating of fluvial deposits: a review. Boreas 31 (4): 303 322.CrossRefGoogle Scholar
Westerhoff, W.E., Wong, T.E. & De Mulder, E.F.J., 2003. Opbouw van de ondergrond – Opbouw van het Neogeen en Kwartair. In: De Mulder, E.F.J., Geluk, M.C., Ritsema, I.L., Westerhoff, W.E. and Wong, T.E. (eds): De ondergrond van Nederland. Wolters Noordhoff (Groningen/Houten): 295352. (In Dutch).Google Scholar
Zagwijn, W.H., 1974. The palaeogeographic evolution of the Netherlands during the Quaternary. Geologie en Mijnbouw 53 (6): 369385.Google Scholar
Ziegler, P.A., 1994. Cenozoic rift system of western and central Europe: an overview. Geologie en Mijnbouw 73: 99127.Google Scholar