Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-22T20:07:52.982Z Has data issue: false hasContentIssue false

Fluvial and aeolian landscape evolution in Hungary – results of the last 20 years research

Published online by Cambridge University Press:  24 March 2014

Gy. Gábris*
Affiliation:
Eötvös University of Budapest, Institute of Geography and Earth Sciences, Department of Physical Geography, 1117 Budapest Pázmány sétány 1/C, Hungary
E. Horváth
Affiliation:
Eötvös University of Budapest, Institute of Geography and Earth Sciences, Department of Physical Geography, 1117 Budapest Pázmány sétány 1/C, Hungary
Á. Novothny
Affiliation:
Eötvös University of Budapest, Institute of Geography and Earth Sciences, Department of Physical Geography, 1117 Budapest Pázmány sétány 1/C, Hungary
Zs. Ruszkiczay-Rüdiger
Affiliation:
Eötvös University of Budapest, Institute of Geography and Earth Sciences, Department of Physical Geography, 1117 Budapest Pázmány sétány 1/C, Hungary
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Present study provides a review of the latest results on fluvial and aeolian landscape evolution in Hungary achieved by our team during the last 20 years.

– The Hungarian river terrace system and its chronology was described with special emphasise on the novel threshold concept. A revised terrace system was created by the compilation of novel terrace chronology and MIS data. Evolution of river terraces was not only governed by climatic factors but tectonic ones too. Incision rate of the Danube, and uplift rate of the Transdanubian Range (TR) was around 0.1-0.3 mm/a in the marginal zones of the TR (mostly based on the published U-series data) and was above 1 mm/a in its axial zone (based on 3He exposure age dating of strath terraces).

– According to a detailed geomorphological investigation of the different channel-planform morphologies in the Middle Tisza region and Sajó-Hernád alluvial fan, six phases of river pattern change and four incision periods were detected during the last 20,000 years.

– Wind polished rock surfaces dated by in situ produced cosmogenic 10Be suggest that deflation was active in Hungary as early as 1.5 Ma ago. According to these exposure age data, Pleistocene denudation rate of the study area (Balaton Highland) was 40-80 m/Ma.

– In sand covered areas the alternations of wind-blown layers and buried fossil soils provide information about climate and environment changes. In this study, periods of sand movement were mostly determined by optically stimulated luminescence (OSL) dating methods and five aeolian sand accumulation periods were recognised during the last 25 000 years.

– A new loess stratigraphical view was elaborated using the most recent dating methods (luminescence, AAR). The lower part of Mende Upper (MF1-2) pedokomplex is suggested to represent the last interglacial period (MIS 5e). During the last interglacial/glacial period (MIS 5 - MIS 2) several soil-forming periods existed but the preservation of these paleosoils is variable depending on their paleogeomorphological position.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2012

References

Borsy, Z., Csongor, É., Sárkány, S. & Szabó, I., 1982. Phases of brown-sand movements in the North-East part of the Great Hungarian Plain. Acta Geographica Debrecina 20: 533.Google Scholar
Borsy, Z., Csongor, E., Lóki, J. & Szabó, I., 1985. Recent results in the radiocarbon dating of wind-blown sand movements in the Tisza-Bodrog Interfluve. Acta Geographica Debrecina 22: 516.Google Scholar
Braucher, R., Del Castillo, P., Siame, L., Hidy, A.J. & Bourlès, D.L., 2009. Determination of both exposure time and denudation rate from an in situproduced 10Be depth profile: A mathematical proof of uniqueness. Model sensitivity and applications to natural cases. Quaternary Geochronology 4: 5664.CrossRefGoogle Scholar
Broecker, W. S. & Van Donk, J., 1970. Insolation changes, ice volumes and the O18 record in deep-sea cores. Rev. Geophys. Space Phys. 8: 169198.CrossRefGoogle Scholar
Bulla, B., 1938. Der Pleistozäne Löß im Karpathenbecken. III. Földtani Közlöny 68: 3358.Google Scholar
Bulla, B., 1941. A Magyar medence pliocén és pleisztocén terraszai. Földtani Közlöny 69: pp. 199230.Google Scholar
Csillag, G., Fodor, L., Sebe, K., Müller, P., Ruszkiczay-Rüdiger, Zs., Thamóné-Bozsó-E, . & Bada, G., 2010. A szélerózió szerepe a Dunántúl negyedidoszaki felszínfeőjlodésében. Földtani Közlöny 140: 463481.Google Scholar
Davis, B.A.S. & Passmore, D.G., 1998: Upper Tisza Project: Radiocarbon analyses of Holocene alluvial and lacustrine sediments. Interim report on current analyses to the Excavation and Fieldwork Committee, Univ. of Newcastle 7.Google Scholar
Frechen, M., Horváth, E. & Gábris, Gy., 1997. Geochronology of Middle and Upper Pleistocene loess sections in Hungary. Quaternary Research 48: 291312.CrossRefGoogle Scholar
Gábris, Gy., 1994. Pleistocene evolution of the Danube in the Carpathian Basin. Terra Nova 6: 495501.CrossRefGoogle Scholar
Gábris, Gy., 1997. Gondolatok a folyóteraszokról. Földrajzi Közlemények 121: 316.Google Scholar
Gábris, Gy., 2003. A földtörténet utolsó 30 ezer évének szakaszai és a futóhomok mozgásának fobb periódusai Magyarországon. Földrajzi Közlemények, 127: 114.Google Scholar
Gábris, Gy., 2008. Relation between the time scale of the river terrace formation and the Oxygen Isotope Stratigraphy in Hungary. In: Kertész, Á. & Kovács, Z. (eds): Dimensions and trends in Hungarian Geography. Studies in Geography in Hungary 33. Akadémiai Kiadó (Budapest): 1931.Google Scholar
Gábris, Gy. & Nagy, B., 2005. Climate and tectonic controlled river style changes on the Sajó-Hernád alluvial fan (Hungary). In: Harvey, A.M., Mather, A.E. & Stoks, M. (eds): Alluvial fans: Geomorphology, Sedimentology, Dynamics. Geol. Soc. London, Spec. Publ. 251: 6167.Google Scholar
Gábris, Gy. & Nádor, A., 2007. Long-term fluvial archives in Hungary: response of the Danube and Tisza rivers to tectonic movements and climatic changes during the Quaternary: a review and new synthesis. Quaternary Science Reviews 26: 27582782.CrossRefGoogle Scholar
Gábris, Gy. & Túri, Z., 2008. Homokmozgás a történelmi idokben a Tiszazug területén. Földrajzi Közlemények 132: 241250.Google Scholar
Gábris, Gy.Krolopp, E. & Ujházy, K., 2011. Későglaciális-holocén környezetváltozás Duna-menti homokbuckák komplex vizsgálata alapján. Földtani Közlöny 141: 445468.Google Scholar
Gábris, Gy., Horváth, E., Novothny, Á. & Ujházy, K., 2000. Environmental changes during the Last-, Late- and Postglacial in Hungary. In: Kertész, Á. & Schweitzer, F. (eds): Physico-geographical Research in Hungary. Studies in Geography in Hungary 32. Akadémiai Kiadó (Budapest): 4761.Google Scholar
Gábris, Gy., Félegyházy, E., Nagy, B. & Ruszkiczay, Zs., 2001. Climate and tectonic controlled river style changes in the Middle Tisza Plain. Global Correlation of the Late Cenozoic Fluvial Deposits. 21-24 04, Prague, Programme & Abstracts, 8 pp.Google Scholar
Gábris, Gy., Horváth, E., Novothny, Á. & Ujházy, K., 2002. History of environmental changes from the Last Glacial period in Hungary. Praehistoria 3: 922.Google Scholar
Gibbard, P. & Van Kolfschoten, T., 2005. The Pleistocene and Holocene Epochs. In: Gradstein, F.H., Ogg, J.G. & Smith, A.G.: A Geologic Time Scale 2004. Cambridge Univ. Press: 441452.CrossRefGoogle Scholar
Green, C.P. & McGregor, D.F.M., 1987. River terraces: A stratigraphical record of environmental change. In: Gardiner, V. (ed.): Proceedings of the First International Geomorphology Conf. 1986. Part I. J. Wiley & Sons Ltd: 977987.Google Scholar
Hein, A.S., Hulton, N.R.J., Dunai, T.J., Schnabel, C., Kaplan, M.R., Naylor, M. & Xu, S., 2009. Middle Pleistocene glaciation in Patagonia dated by cosmogenicnuclide measurements on outwash gravels. Earth and Planetary Science Letters 286: 184197.CrossRefGoogle Scholar
Horváth, E., 2001. Marker horizons in the loesses of the Carpathian Basin. Quaternary International 76/77: 157163.CrossRefGoogle Scholar
Jámbor, Á., 2002. A magyarországi pleisztocén éleskavics elofordulások és földtani jelentoségük. Földtani Közlöny 132: 101116.Google Scholar
Joó, I., 2003. Results and problems of research on present vertical movements of the Carpathian region (in Hungarian). Geodézia és Kartográfia 55: 1215.Google Scholar
Kaiser, M., 1997. A geomorphic evolution of the Transdanubian Mountains, Hungary. Zeit. für Geomorphologie N.F. Suppl.-Bd. 110: 114.Google Scholar
Kasse, C., Hoek, W.Z., Bohncke, S.J.P., Konert, M., Weijers, J.W.H., Cassee, M.L. & Van der Zee, R.M., 2005. Late Glacial fluvial response of the Niers-Rhine (western Germany) to climate and vegetation change. Journal of Quaternary Science 20: 377394.CrossRefGoogle Scholar
Kasse, C.Vandenberghe, D., De Corte, F. & Van den haute, P., 2007. Late Weichselian fluvio-aeolian sands and coversands of the type locality Grubbenvorst (southern Netherlands): sedimentary environments, climate record and age. Journal of Quaternary Science 22: 695708.CrossRefGoogle Scholar
Kasse, C., Bohncke, S.J.P., Vandenberghe, J. & Gabris, Gy., 2010. Fluvial style changes during the last glacial-interglacial transition in the middle Tisza valley (Hungary). Proceedings of the Geologists Association 121: 180194.CrossRefGoogle Scholar
Kele, S., 2009. Investigation of travertines from the Carpathian Basin: paleoclimatological and sedimentological analysis (in Hungarian with English summary). PhD Thesis, Eötvös University Budapest, 176. p.Google Scholar
Kele, S., Korpás, L., Demény, A., Kovács-Pálffy, P., Bajnóczi, B. & Medzihradszky, Zs., 2006. Paleoenvironmental evaluation of the Tata Travertine Complex (Hungary), based on stable isotopic and petrographic studies. Acta Geologica Hungarica 49: 131.CrossRefGoogle Scholar
Kele, S., Scheuer, Gy., Demény, A., Shen, Ch-C., & Chiang, H-W., 2009. U-series dating and isotope geochemical study of the Gellért Hill (Budapest) travertine. Central European Geology 52: 199224.CrossRefGoogle Scholar
Kele, S., Scheuer, Gy., Demény, A., Shen, Ch-C. & Chiang, H-W., 2011. Uraniumseries dating and geochemical study of the travertines located on the Rózsadomb Hill (Budapest) (in Hungarian with English abstract). Földtani Közlöny 141: 445468.Google Scholar
Kéz, A., 1934. A Duna gyor-budapesti szakaszának kialakulásáról. Földrajzi Közlemények 62: 175193.Google Scholar
Kiss, T. & Sipos, & Gy., , 2006. Emberi tevékenység hatására meginduló homokmozgások a Dél-Nyírségben egy zárt buckaközi mélyedés szedimentológiai elemzése alapján. Földrajzi tanulmányok Lóki József 60. születésnapja alkalmából. Kossuth Egyetemi Kiadó (Debrecen): 115124.Google Scholar
Kiss, T., Nyári, D. & Sipos, Gy., 2006. Homokmozgások vizsgálata a történelmi idokben Csengele területén. In: Kiss, A., Mezosi, G., Sümeghy, Z. (szerk.): Táj, környezet és társadalom. SZTE éghajlattani és Tájföldrajzi, Természeti Földrajzi és Geoinformatikai Tanszék (Szeged): 372382Google Scholar
Kozarski, S., 1991. Wartha – a case study of a lowland river. In: Starkel, L., Gregory, K. & Thornes, J. (eds): Temperate Palaeohydrology. J. Wiley and Sons Ltd (London): 189215.Google Scholar
Kretzoi, M. & Dobosi, V. (eds), 1990. Vértesszolos. Site, man and culture. Akadémiai Kiadó (Budapest).Google Scholar
Kretzoi, M. & Pécsi, M., 1982. Pliocene and Quaternary chronostratigraphy and continental surface development of the Pannonian Basin. In: Pécsi, M. (ed.): Quaternary Studies in Hungary, INQUA, Hungarian Academy of Sciences, Geogr. Res. Inst., Budapest: 1142.Google Scholar
Krolopp, E., Schweitzer, F., Scheuer, Gy., Dénes, Gy., Kordos, L., Skoflek, I. & Jánossy, D., 1976. Quaternary Formation of the Castle Hill in Buda. Földtani Közlöny 106: 193228.Google Scholar
Krolopp, E., Sümegi, P., Kuti, L., Hertelendi, E. & Kordos, L., 1995. Szeged-Öthalom környéki löszképzodmények keletkezésének paleoökológiai rekonstrukciója. Földtani Közlöny, 125: 309361.Google Scholar
Krolopp, E. & Sümegi, P., 1995. Palaeoecological reconstruction of the Late Pleistocene, based on Loess Malacofauna in Hungary. GeoJournal 36: 213222.CrossRefGoogle Scholar
Kukla, G.J., 1977. Pleistocene land-sea correlations I. Europe. Earth-Science Reviews 13: 307374.CrossRefGoogle Scholar
Lóki, J., Hertelendi, E. & Borsy, Z., 1994. New dating of blown sand movement in the Nyírség. Acta Geographica Debrecina 32: 6776.Google Scholar
Magyari, E., 2002. Climatic versus human modification of the Late Quaternary vegetation in Eastern Hungary. Ph.D. Thesis, University of Debrecen, HungaryGoogle Scholar
Marosi, S., 1955. A Csepel-sziget geomorfológiai problémái. Földrajzi Értesíto 4: 279300.Google Scholar
Nagy, B. & Félegyházi, E., 2001. A Sajó-Hernád hordalékkúp késopleisztocén mederhálózatának vizsgálata. Acta Geographica Debrecina, 35: 221–22.Google Scholar
Novothny, Á., Horváth, E. & Frechen, M., 2002. The loess profile at Albertirsa, Hungary – improvements in loess stratigraphy by luminescence dating. Quaternary International 95–96: 155163.CrossRefGoogle Scholar
Novothny, Á., Frechen, M., Horváth, E., Bradák, B., Oches, E.A., McCoy, W. & Stevens, T., 2009. Luminescence and amino acid racemization chronology and magnetic susceptibility record of the loess-paleosol sequence at Sütto, Hungary. Quaternary International, 198: 6276.CrossRefGoogle Scholar
Novothny, Á.Frechen, M. & Horváth, E., 2010. Luminescence dating of sand movement periods from the Gödöllo Hills, Hungary. Geomorphology 122: 254263.CrossRefGoogle Scholar
Novothny, Á., Frechen, M., Horváth, E., Krbetschek, M. & Tsukamoto, S., 2012. Infrared stimulated luminescence and infrared-radiofluorescence dating of quaternary sediments in Hungary. Quaternary Geochronology, in press.Google Scholar
Nyári, D. & Kiss, T., 2005. Homokmozgások vizsgálata a Duna-Tisza közén. Földrajzi Közlemények 129:133146.Google Scholar
Oches, E.A. & McCoy, W.D., 1995. Aminostratigraphic evaluation of conflicting age estimates for the ‘Young Loess’ of Hungary. Quaternary Research 44: 160170.CrossRefGoogle Scholar
Pécsi, M., 1959. Entwicklung und Morphologie des Donautales in Ungarn. Akadémiai kiadó, Budapest, 345 p.Google Scholar
Pécsi, M., 1975. Stratigraphical subdivision of the Hungarian loess sections. Földrajzi Közlemények 23: 217230Google Scholar
Pécsi, M., 1987. Type locality of young loess in Hungary at Mende. In: Pécsi, M. & Velichko, A.A. (eds): Paleogeography and loess.Akadémiai Kiadó Budapest, 3555.Google Scholar
Pécsi, M., 1990. Geomophological position and absolute age of the Vértesszőlős lower paleolithic site. In: Kretzoi, M. & Dobosi, V. (eds): Vértesszőlős – site, man and culture. Akadémiai Kiadó (Budapest): 2741.Google Scholar
Pécsi, M., & Richter, G., 1996. Loess: Origin – Classification – Landscape. Annals of Geomorphology. Gebrüder Brontraeger, Berlin-Stuttgart, 1996: 391.Google Scholar
Pécsi, M., Schweitzer, F., Balogh, J., Balogh Jné, M., Havas, J. & Heller, F., 1995. A new loess-paleosol lithostratigraphical sequence at Paks (Hungary). Loess in Form 3, Geographical Research Institute Hungarian Academy of Science: 6378.Google Scholar
Rónai, A., 1985. Quaternary Geology of the Great Hungarian Plain (in Hungarian). Geologica Hungarica, ser. Geol. 21: 332333.Google Scholar
Ruszkiczay-Rüdiger, Zs., Fodor, L., Bada, G., Leél-Össy, Sz., Horváth, E. & Dunai, T.J., 2005a. Quantification of Quaternary vertical movements in the central Pannonian Basin: A review of chronologic data along the Danube River, Hungary. Tectonophysics 410: 157172.CrossRefGoogle Scholar
Ruszkiczay-Rüdiger, Zs., Dunai, T.J., Bada, G., Fodor, L. & Horváth, E., 2005b. Middle to late Pleistocene uplift rate of the Hungarian Mountain Range at the Danube Bend (Pannonian Basin) using in situ produced 3He. Tectonophysics 410: 173187.CrossRefGoogle Scholar
Ruszkiczay-Rüdiger, Zs., Braucher, R., Csillag, G., Fodor, L., Dunai, T.J., Bada, G., Bourlès, D. & Müller, P., 2011. Dating Pleistocene aeolian landforms in Hungary, Central Europe, using in situ produced cosmogenic 10Be. Quaternary Geochronology 6: 515529.CrossRefGoogle Scholar
Schumm, S.A., 1979. Geomorphic thresholds – concept and its applications. Transactions of the Institute of British Geographers 4: 485515.CrossRefGoogle Scholar
Sebe, K., Csillag, G., Ruszkiczay-Rüdiger, Zs., Fodor, L., Thamó-Bozsó, E., Müller, P. & Braucher, R., 2011. Wind erosion under cold climate: A fossil periglacial mega-yardang system in Central Europe (Western Pannonian Basin, Hungary), Geomorphology 134/3–4: 470482.CrossRefGoogle Scholar
Siame, L., Bellier, O., Braucher, R., Sébrier, M., Cushing, M., Bourlès, D.L., Hamelin, B., Baroux, E., De Voogd, B., Raisbeck, G. & Yiou, F., 2004. Local erosion rates versus active tectonics: cosmic ray exposure modelling in Provence (South-East France). Earth and Planetary Science Letters 220: 345364.CrossRefGoogle Scholar
Sümegi, P., 1993. Sedimentary geological and stratigraphical analysis made on the material of the Upper Palaeolithic settlement at Jászfelsoszentgyörgy-Szunyogos. Tisicum, 8: 6376.Google Scholar
Sümegi, P., Krolopp, E. & Hertelendi, E., 1998. Palaeoecological reconstruction of the Ságvár-Lascaux Interstadial. Acta Geographica Debrecina 34: 165180.Google Scholar
Thomsen, K.J., Murray, A.S., Jain, M. & Bøtter-Jensen, L., 2008. Laboratory fading rates of various luminescence signals from feldspar-rich sediment extracts. Radiation Measurements 43: 14741486.CrossRefGoogle Scholar
Ujházy, K.; Gábris, Gy. & Frechen, M., 2003. Ages of periods of sand movement in Hungary determined through luminescence measurements. Quaternary International 111: 91100.CrossRefGoogle Scholar
Vandenberghe, J., 1987. Changing fluvial processes in small lowland valleys at the end of the Weichselian Pleniglacial and during the Late Glacial. First Internat. Geomorph. Congr. Manchester, Proceedings, J. Willey & Sons: 731744.Google Scholar
Vandenberghe, J., Kasse, C., Bohncke, S. & Kozarski, S., 1994. Climate-related river activity at the Wechselian-Holocene transition: a comparative study of the Wartha and Maas rivers. Terra Nova 6: 476485.CrossRefGoogle Scholar
Vandenberghe, J., Kasse, K., Gabris, Gy., Bohncke, S. & Van Huissteden, K., 2003. Fluvial style changes during the last 35.000 years in the Tisza valley. XVI INQUA Congress, 23-30 07, Reno, Nevada, USA. Abstracts, 68 pp.Google Scholar
Vandenberghe, J., 2008. The fluvial cycle at cold-warm-cold transitions in lowland regions: a refinement of theory. Geomorphology 98: 275284.CrossRefGoogle Scholar
Wintle, A.G. & Packman, S C., 1988. Thermoluminescence ages for three sections in Hungary. Quaternary Science Reviews 7: 315320.CrossRefGoogle Scholar
Zöller, L. & Wagner, G.A., 1990. Thermoluminescence dating of loess – recent developments. Quaternary International 7/8: 119128.CrossRefGoogle Scholar
Zöller, L., Oches, E.A. & McCoy, W.D., 1994. Towards a revised chronostratigraphy of loess in Austria with respect to key sections in the Czech Republic and in Hungary. Quaternary Geochronology (Quaternary Science Reviews) 13: 465472.CrossRefGoogle Scholar