Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-18T19:56:38.910Z Has data issue: false hasContentIssue false

Faults in the Asquempont area, southern Brabant Massif, Belgium

Published online by Cambridge University Press:  01 April 2016

T.N. Debacker*
Affiliation:
Structural Geology & Tectonics Group, Katholieke Universiteit Leuven, Redingenstraat 16, B-3000 Leuven, [email protected], [email protected].
A. Herbosch
Affiliation:
Département des Sciences de la Terre et de l’environnement, Université Libre de Bruxelles, Avenue F. Roosevelt 50 CP160/02, B-1050 Bruxelles, [email protected]
J. Verniers
Affiliation:
Laboratory of Palaeontology, Ghent University, Krijgslaan 281, S8, B-9000 Gent, [email protected]
M. Sintubin*
Affiliation:
Structural Geology & Tectonics Group, Katholieke Universiteit Leuven, Redingenstraat 16, B-3000 Leuven, [email protected], [email protected].
*
1(corresponding author)
1(corresponding author)

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The literature suggests that the Asquempont fault, a supposedly important reverse fault forming the limit between the Lower to lower Middle Cambrian and the Ordovician in the Sennette valley, is poorly understood. Nevertheless, this fault is commonly equated with a pronounced NW-SE-trending aeromagnetic lineament, the Asquempont lineament, and both the geometry of the Asquempont lineament and the supposed reverse movement of the Asquempont fault are used to develop large-scale tectonic models of the Brabant Massif. New outcrop observations in the Asquempont area, the “type locality” of the Asquempont fault, in combination with outcrop and borehole data from surrounding areas, show that the Asquempont fault is not an important reverse fault, but instead represents a pre-cleavage, low-angle extensional detachment. This detachment formed between the Caradoc and the timing of folding and cleavage development and is not related to the aeromagnetic Asquempont lineament. The Asquempont area also contains several relatively important, steep, post-cleavage normal faults. Apparently, these occur in a WNW-ESE-trending zone between Asquempont and Fauquez, extending westward over Quenast towards Bierghes. This zone coincides with the eastern part of the WNW-ESE-trending Nieuwpoort-Asquempont fault zone, for which, on the basis of indirect observations, previously a strike-slip movement has been proposed. Our outcrop observations question this presumed strike-slip movement. The Asquempont fault may be related to the progressive unroofing of the core of the Brabant Massif from the Silurian onwards. Possibly, other low-angle extensional detachments similar to the Asquempont fault occur in other parts of the massif. Possible candidates are the paraconformity-like contacts depicted on the most recent geological map of the Brabant Massif.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2004

References

André, L. & Deutsch, S., 1985. Very low-grade metamorphic Sr isotopic resettings of magmatic rocks and minerals: evidence for a late Givetian strike-slip division of the Brabant Massif, Belgium. Journal of the Geological Society, London 142: 911–923.Google Scholar
Belgian Geological Survey, 1994. Aeromagnetic map of the Brabant Massif: residual total field reduced to the pole. Scale 1/100000.Google Scholar
Belmans, M., 2000. Structurele geologie van het Siluur uit de Orneauvallei, Massief van Brabant. Unpublished M.Sc. thesis, Laboratorium voor Paleontologie, Universiteit Gent.Google Scholar
Camelbeeck, T., 1993. Mécanisme au foyer des tremblements de terre et contraintes tectoniques: le cas de la zone intraplaque belge. Unpublished Ph.D. thesis, Université Catholique de Louvain.Google Scholar
Camelbeeck, T., 1997. The study of active faults in stable continental Europe: examples in the Roer Graben and in the Belgian seismic active zone. Aardkundige Mededelingen 8: 35–38.Google Scholar
Chacksfield, B., De Vos, W., D’hooge, L., Dusar, M., Lee, M., Poitevin, C., Royles, C. & Verniers, J., 1993. A new look at Belgian aeromagnetic and gravity data through image-based display and integrated modelling techniques. Geological Magazine 130: 583–591.Google Scholar
Corin, F., 1963. Sur les roches éruptives de la tranchée d’Hasquempont, canal de Charleroi. Bulletin de la Société belge de Géologie, de Paléontologie et d’Hydrologie 72: 55–60.Google Scholar
Cosgrove, J.W., 1976. The formation of crenulation cleavage. Journal of the Geological Society, London 262: 153–176.Google Scholar
Debacker, T.N., 1998. Verslag boorbeschrijving van boring 383DB1 te Bever. Intern rapport in opdracht van het Ministerie van de Vlaamse Gemeenschap, Afdeling Natuurlijke Rijkdommen en Energie (ANRE), pp. 1–4.Google Scholar
Debacker, T.N., 1999. Folds trending at various angles to the transport direction in the Marcq area, Brabant Massif, Belgium. Geologica Belgica 2: 159–172.Google Scholar
Debacker, T.N., 2001. Palaeozoic deformation of the Brabant Massif within eastern Avalonia: how, when and why? Unpublished Ph.D. thesis, Laboratorium voor Paleontologie, Universiteit Gent.Google Scholar
Debacker, T.N., 2002. Cleavage/fold relationship in the Silurian of the Mehaigne-Burdinale area, southeastern Brabant Massif, Belgium. Geologica Belgica 5: 3–15.Google Scholar
Debacker, T.N., Sintubin, M. & Verniers, J., 1999. Cleavage/fold relationships in the Silurian metapelites, southeastern Anglo-Brabant fold belt (Ronquières, Belgium). Geologie & Mijnbouw 78: 47–56.Google Scholar
Debacker, T.N., Sintubin, M. & Verniers, J., 2001. Large-scale slumping deduced from structural and sedimentary features in the Lower Palaeozoic Brabant Massif, Belgium. Journal of the Geological Society, London 158: 341–352.Google Scholar
Debacker, T.N., Sintubin, M. & Verniers, J., 2002. Timing and duration of the progressive deformation of the Brabant Massif, Belgium. Aardkundige Mededelingen 12: 73–76.Google Scholar
de Magnée, I. & Raynaud, J., 1944. Etude magnétique de la tectonique du Cambrien du Brabant à l’est de Court-St-Etienne. Annales de la Société Géologique de Belgique 67: 495–546.Google Scholar
De Vos, W., 1997. Influence of the granitic batholith of Flanders on Acadian and later deformation (Brabant Massif, Belgium). Aardkundige Mededelingen 8: 49–52.Google Scholar
De Vos, W., Chacksfield, B.C., D’Hooge, L., Dusar, M., Lee, M.K., Poitevin, C., Royles, C.P., Vandenborgh, T., Van Eyck, J. & Verniers, J., 1993b. Image-based display of Belgian digital aeromagnetic and gravity data. Professional Paper of the Geological Survey of Belgium 263: 1–8.Google Scholar
De Vos, W., Poot, B., Hus, J. & El Khayati, M., 1992. Geophysical characterization of lithologies from the Brabant Massif as a contribution to gravimetric and magnetic modelling. Bulletin de la Société belge de Géologie 101: 173–180.Google Scholar
De Vos, W., Verniers, J., Herbosch, A. & Vanguestaine, M., 1993a. A new geological map of the Brabant Massif, Belgium. Geological Magazine 130:605–611.Google Scholar
Dubey, A.K. & Cobbold, P.R., 1977. Non-cylindrical, flexural slip folds in nature and experiment. Tectonophysics 38: 223–239.CrossRefGoogle Scholar
Dumont, A., 1848. Mémoire sur les terrains ardennais et rhénan de 1’ ardenne, du rhin, du brabant et du condros, seconde partie: terrain rhénan. Mémoires couronnés de l’Académie royale de Belgique, Classe des Sciences 22: 451 pp.Google Scholar
Everaerts, M., Poitevin, C., De Vos, W. & Sterpin, M., 1996. Integrated geophysical/geological modelling of the western Brabant Massif and structural implications. Bulletin de la Société belge de Géologie 105:41–59.Google Scholar
Fourmarier, P., 1914. La poussée calédonienne dans le massif siluro-cambrien du Brabant. Annales de la Société Géologique de Belgique 41: B300314.Google Scholar
Fourmarier, P., 1921. La tectonique du Brabant et des régions voisines. Mémoires de l’Académie Royale de Belgique, Classe des Sciences (2ème série) 4: 95 pp.Google Scholar
Goscombe, B.D., Findlay, R.H., McClenaghan, M.P. & Everard, J., 1994. Multiscale kinking in northeast Tasmania - crustal shortening at shallow crustal levels. Journal of Structural Geology 16: 1077–1092.Google Scholar
Gradstein, F.M. & Ogg, J., 1996. A Phanerozoic time scale. Episodes 19: 3–6.CrossRefGoogle Scholar
Hennebert, M. & Eggermont, B., 2002. Carte Braine-le-Comte -Feluy n° 39/5-6, Carte géologique de Wallonie, échelle 1/25000.Ministère de la Région Wallonne (Namur).Google Scholar
Herbosch, A. & Lemonne, E., 2000. Carte Nivelles-Genappe n° 39/7-8, Carte géologique de Wallonie, échelle 1/25000. Ministère de la Région Wallonne (Namur).Google Scholar
Herbosch, A., Vanguestaine, M., Degardin, J.M., Dejonghe, L., Fagel, N. & Servais, T., 1991. Etude lithostratigraphique, biostratigraphique et sédimentologique du sondage de Lessines (bord méridional du Massif du Brabant, Belgique). Annales de la Société géologique de Belgique 114: 195–212.Google Scholar
Herbosch, A., Verniers, J., Debacker, T., Billiaert, B., De Schepper, S. & Belmans, M., 2002.The Lower Palaeozoic stratigraphy and sedimentology of the Brabant Massif in the Dyle and Orneau valleys and of the Condroz Inlier at Fosses:an excursion guidebook. Geologica Belgica 5: 71–142.Google Scholar
Johnson, T.E., 1991. Nomenclature and geometric classification of cleavage-transected folds. Journal of Structural Geology 13: 261–274.Google Scholar
Legrand, R., 1967. Ronquières, documents géologiques. Mémoires pour servir à l’Explication des Cartes Géologiques et Minières de la Belgique 6: 60 pp.Google Scholar
Legrand, R., 1968. Le Massif du Brabant. Mémoires pour servir à l’Explication des Cartes Géologiques et Minières de la Belgique 9: 148 pp.Google Scholar
Legros, B., 1991. Etude structurale du Cambro-Ordovicien de la vallée de la Sennette (Massif du Brabant) - Belgique. Unpublished M.Sc. thesis, Université Catholique de Louvain.Google Scholar
Lenoir, J.L., 1987. Etude cartographique, pétrographique et palynologique de l’Ordovicien inférieur du bassin de la Senne. Unpublished M.Sc. thesis, Université Libre de Bruxelles, Bruxelles.Google Scholar
Malaise, C., 1873. Description du terrain silurien du centre de la Belgique. Mémoires couronnés de l’Académie royale de la Belgique, Classe des Sciences 37: 122 pp.Google Scholar
Malaise, C., 1908. Compte rendu de l’excursion silurienne du 21 mai 1903. Bulletin de la Société Belge de Géologie 22: 59–62.Google Scholar
Mansy, J.L., Everaerts, M. & De Vos, W., 1999. Structural analysis of the adjacent Acadian and Variscan fold belt in Belgium and northern France from geophysical and geological evidence. Tectonophysics 309: 99–116.CrossRefGoogle Scholar
Mortelmans, G., 1955. Considérations sur la structure tectonique et la stratigraphie du Massif du Brabant. Bulletin de la Société belge de Géologie, de Paléontologie et d’Hydrologie 64: 179–218.Google Scholar
Paterson, M.S. & Weiss, L.E., 1966. Experimental deformation and folding in phyllite. Geological Society of America Bulletin 77: 343–374.CrossRefGoogle Scholar
Patijn, R.J.H., 1963. Het Carboon in de ondergrond van Nederland en de oorsprong van het Massief van Brabant. Geologie & Mijnbouw 42: 341–349.Google Scholar
Poty, E., 1991. Tectonique de blocs dans le prolongement oriental du Massif du Brabant. Annales de la Société géologique de Belgique 114:265–275.Google Scholar
Price, N.J. & Cosgrove, J.W., 1990. Analysis of geological structures. Cambridge University Press (Cambridge): 502 pp.Google Scholar
Samuelsson, J. & Verniers, J., 2000. Ordovician chitinozoan biozonation of the Brabant Massif, Belgium. Review of Palaeobotany and Palynology 113: 105–129.Google Scholar
Servais, T., Vanguestaine, M. & Herbosch, A., 1993. Review of the stratigraphy of the Ordovician in the Brabant Massif, Belgium. Geological Magazine 130: 699–710.Google Scholar
Sintubin, M., 1997a. Cleavage-fold relationships in the Lower Palaeozoic Brabant Massif (Belgium). Aardkundige Mededelingen 8: 161–164.Google Scholar
Sintubin, M., 1997b. Structural implications of the aeromagnetic lineament geometry in the Lower Palaeozoic Brabant Massif (Belgium). Aardkundige Mededelingen 8: 165–168.Google Scholar
Sintubin, M., 1999. Arcuate fold and cleavage patterns in the southeastern part of the Anglo-Brabant fold belt (Belgium): tectonic implications. Tectonophysics 309: 81–97.Google Scholar
Sintubin, M. & Everaerts, M., 2002. A compressional wedge model for the Lower Palaeozoic Anglo-Brabant Belt (Belgium) based on Potential Field Data. In: Winchester, J., Verniers, J. & Pharaoh, T. (Eds): Palaeozoic Amalgamation of Central Europe. Geological Society, London, Special Publications 201: 327–343.Google Scholar
Sintubin, M., Brodkom, F. & Laduron, D., 1998. Cleavage/fold relationships in the Lower Cambrian Tubize Group, southeast Anglo-Brabant fold belt (Lembeek, Belgium). Geological Magazine 135:217–226.Google Scholar
Sintubin, M., Debacker, T.N. & Verniers, J., 2002. The tectonometamorphic history of the Brabant Massif (Belgium): the state of the art. Aardkundige Mededelingen 12: 69–72.Google Scholar
Sterpin, M. & De Vos, W., 1996. Onderzoek naar metallische mineralisaties in de Paleozoïsche sokkel van Vlaanderen. Eindverslag ProjectVLA/94-3.5.: 47 pp.Google Scholar
Van den haute, P. & Vercoutere, C., 1989. Apatite fission-track evidence for a Mesozoic uplift of the Brabant Massif: preliminary results. Annales de la Société Géologique de Belgique 112: 443–452.Google Scholar
Van Grootel, G., Verniers, J. & Debacker, T.N., 2002. Overview of the Upper Ordovician of the Fauquez area (Brabant Massif, Belgium), lithostratigraphy, biostratigraphy, geological map and structures. Aardkundige Mededelingen 12: 77–79.Google Scholar
Van Grootel, G., Verniers, J., Geerkens, B., Laduron, D., Verhaeren, M., Hertogen, J. & De Vos, W., 1997. Timing of subsidence-related magmatism, foreland basin development, metamorphism and inversion in the Anglo-Brabant fold belt. Geological Magazine 134:607–616.Google Scholar
Vanguestaine, M., 1977. Données palynologiques nouvelles dans l’Ordovicien inférieur du bassin de la Senne, Massif du Brabant, Belgique. Annales de la Société Géologique de Belgique 100: 223–231.Google Scholar
Vanguestaine, M., 1991. Datation par acritarches des couches Cambro-Trémadociennes les plus profondes du sondage de Lessines (bord méridional du Massif du Brabant, Belgique). Annales de la Société géologique de Belgique 114: 213–231.Google Scholar
Verniers, J., Herbosch, A., Vanguestaine, M., Geukens, F., Delcambre, B. Pingot, J.L., Belanger, I., Hennebert, , Debacker, T., Sintubin, M. & De Vos, W., 2001. Cambrian-Ordovician-Silurian lithostratigraphical units (Belgium). Geologica Belgica 4: 5–38.Google Scholar
Verniers, J., Pharaoh, T., André, L., Debacker, T., De Vos, W., Everaerts, M., Herbosch, A., Samuelsson, J., Sintubin, M. & Vecoli, M., 2002. Lower Palaeozoic basin development and Caledonian deformation history in and around Belgium in the framework of Eastern Avalonia. In: Winchester, J., Verniers, J. & Pharaoh, T (Eds): Palaeozoic Amalgamation of Central Europe. Geological Society, London, Special Publications 201: 47–93.Google Scholar
Waterlot, G., Beugnies, A. & Bintz, J., 1973. Guides Géologiques Regionaux: Ardenne-Luxembourg. Masson et Cie. (Paris): 206 pp.Google Scholar