Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-25T05:29:35.041Z Has data issue: false hasContentIssue false

The effective subsidence capacity concept: How to assure that subsidence in the Wadden Sea remains within defined limits?

Published online by Cambridge University Press:  24 March 2014

J.A. de Waal*
Affiliation:
State Supervision of Mines, Henri Faasdreef 312, PO Box 24037, 2490 AA The Hague, the Netherlands
J.P.A. Roest
Affiliation:
State Supervision of Mines, Henri Faasdreef 312, PO Box 24037, 2490 AA The Hague, the Netherlands
P.A. Fokker
Affiliation:
TNO – Geological Survey of the Netherlands; Princetonlaan 6, 3584 CB Utrecht, PO Box 80015, 3508 TA Utrecht, the Netherlands
I.C. Kroon
Affiliation:
TNO – Geological Survey of the Netherlands; Princetonlaan 6, 3584 CB Utrecht, PO Box 80015, 3508 TA Utrecht, the Netherlands
J.N. Breunese
Affiliation:
TNO – Geological Survey of the Netherlands; Princetonlaan 6, 3584 CB Utrecht, PO Box 80015, 3508 TA Utrecht, the Netherlands
A.G. Muntendam-Bos
Affiliation:
TNO – Geological Survey of the Netherlands; Princetonlaan 6, 3584 CB Utrecht, PO Box 80015, 3508 TA Utrecht, the Netherlands
A.P. Oost
Affiliation:
Deltares, Princetonlaan 6, 3584 CB Utrecht, PO Box 85467, 3508 AL Utrecht, the Netherlands
G. van Wirdum
Affiliation:
Deltares, Princetonlaan 6, 3584 CB Utrecht, PO Box 85467, 3508 AL Utrecht, the Netherlands

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Subsidence caused by extraction of hydrocarbons and solution salt mining is a sensitive issue in the Netherlands. An extensive legal, technical and organisational framework is in place to ensure a high probability that such subsidence will stay within predefined limits. The key question is: how much subsidence is acceptable and at which rate? And: how can it be reliably assured that (future) subsidence will stay within these limits?

To address the issue for the Wadden Sea area, the concept of ‘effective subsidence capacity’ is used. To determine the ‘effective subsidence capacity’, the maximum volumetric rate of relative sea-level rise, that can be accommodated in the long term, without environmental harm, is established first. The volume of sediment that can be transported and deposited by nature into the tidal basin where the subsidence is expected, ultimately determines this ‘limit of acceptable average subsidence rate’. The capability of the tidal basins to ‘capture’ sediment over the lunar cycle period of 18.6 years is the overall rate-determining step. Effective subsidence capacity is then the maximum average subsidence rate available for planning of human activities. It is obtained by subtracting the subsidence volume rate ‘consumed’ by natural relative subsidence in the area (sealevel rise plus natural shallow compaction) from the total long-term acceptable subsidence volume rate limit.

In the operational procedure for mining companies, six-years-average expectation values of subsidence rates are used to calculate the maximum allowable production rates. This is done under the provision that production will be reduced or halted if the expected or actual subsidence rate (natural + man induced) is likely to exceed the limit of acceptable subsidence. Monitoring and management schemes ensure that predicted (6-year average) and actual (18.6-year average) subsidence rates stay within the limit of acceptable subsidence rate and that no damage is caused to the protected nature. A GPS based early warning system is used for early detection of unexpected behaviour. In support of SSM (State Supervision of Mines, the government regulator), TNO-AGE (an independent government advisory group) applies an independent Bayesian statistical analysis of all data, as they become available, to calculate the probability of scenario's under which future subsidence will exceed the defined limits. It is external to the operator's annual measurement and control loop and ensures that preventive actions can be taken in time in case such scenarios emerge.

Regular communication keeps the authorities and the general public informed on the use of the effective subsidence capacity to demonstrate that the actual average subsidence rate stays strictly within the defined bounds and that, from a scientific point of view, there is no reasonable doubt that damage to the tidal system will not occur now or in the future.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2012

References

Auditcommissie gaswinning onder de Waddenzee, 2010. Monitoring van aardgaswinning onder de Waddenzee vanaf de locaties Moddergat, Lauwersoog en Vierhuizen. Advies 2010 van de Auditcommissie. rapportnummer 2390-79, 14 pp.Google Scholar
Barends, F.B.J., Kenselaar, F. & Schröder, F.H., 2002. Bodemdaling meten in Nederland. Hoe precies moet het? Hoe moet het precies? In: Nederlandse Commissie voor Geodesie, 39, 100 pp.Google Scholar
Barends, F.B.J., Blaauwendraad, J., Kenselaar, F., Kenter, C. & Klees, R., 2009. Van Meting naar Daling. Bodemdaling door delfstofwinning. Publication Technische Commissie Bodembeweging, 67 pp.Google Scholar
Biot, M.A., 1941. General theory of three-dimensional consolidation. Journal of Applied Physics 12: 155164.Google Scholar
Biot, M.A., 1956. General solution of the equations of elasticity and consolidation for a porous material. Journal of Applied Mechanics 78: 9196.Google Scholar
Bjerrum, L., 1967. Engineering geology of Norwegian normally consolidated marine clays as related to the settlements of buildings. Geotechnique 17: 81118.CrossRefGoogle Scholar
Bjerrum, L., 1973. Problems of soil mechanics and construction on soft clays, State-of-the-art report to session IV. In: Proceedings, 8th International Conference on Soil Mechanics and Foundation Engineering, Moscow, 3: 111159.Google Scholar
Breunese, J.N., van Eijs, R.M.H.E., de Meer, S. & Kroon, I.C., 2003. Observation and prediction of the relation between salt creep and land subsidence – The Barradeel Case. In: Proceedings SMRI Fall conference, Chester, UK.Google Scholar
Carreon-Freyre, D., Cerca, M. & Galloway, D.L. (eds), 2010. Monitoring techniques of ground displacements and subsurface deformation, In: Proceedings Eight International Symposium on Land Subsidence, 10 17-22, Mexico: IAHS Publication 339, 4: 249382.Google Scholar
Darcy, H.J., 1856. Determination of the law of flow of water through sand. In: Les Fontaines Publiques de la Ville de Dijon. Libraire de Corps Impériaux Aes Pont et Chaussées et des Mines, Paris: 590594.Google Scholar
De Glopper, R.J. & Ritzema, H.P., 1994. Land subsidence. In: Drainage principles and applications, IRLI publication: 477488.Google Scholar
De Vlas, J. (ed.), 2011. Monitoring effecten van bodemdaling op Ameland-Oost 2005-2010. Begeleidingscommissie Monitoring Bodemdaling Ameland, 151 pp.Google Scholar
De Waal, J.A., 1986. On the rate type compaction behaviour of sandstone reservoir rock. Ph.D. dissertation, Delft University of Technology, the Netherlands, 166 pp.Google Scholar
De Waal, J.A. & Smits, R.M.M., 1986. Prediction of reservoir compaction and surface subsidence: field application of a new model. SPE Formation Evaluation 3 (2): 340346.Google Scholar
Den Haan, E.J., 1994. Vertical vertical compression of soils. Ph.D. dissertation, Delft University Press, 96 pp.Google Scholar
Elias, E.P.L., Van der Spek, A.J.F., Wang, Z.B. & De Ronde, J.G., 2012. Morphodynamics of the Dutch Wadden Sea in the last century. Accepted by Netherlands Journal of Geosciences.Google Scholar
Evensen, G., 2003. The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean dynamics, 53 (4): 343367.Google Scholar
Fokker, P.A. & Orlic, B., 2006. Semi-analytic modelling of subsidence. Mathematical Geology 38 (5): 565589.Google Scholar
Gambolatti, G., 1972. A three-dimensional model to compute land subsidence. Bulletin of the International Association of Hydrological Sciences XVII: 219226.Google Scholar
Gassmann, F., 1951. Über die Elastizität poröser Medien. Vierteljahrsschrift der Naturforschenden Gesellschaft, Zürich, 96: 13.Google Scholar
Geertsma, J., 1957a. The effect of fluid pressure decline on volumetric changes of porous rocks. Petroleum Transactions, AIME 210: 331340.Google Scholar
Geertsma, J., 1957b. A remark on the analogy between thermoelasticity and elasticity of saturated porous media. Journal of the Mechanics and Physics of Solids 6 (1): 1316.Google Scholar
Geertsma, J., 1973. A basic theory of subsidence due to reservoir compaction: the homogeneous case. Verhandelingen Koninklijk Nederlands Geologisch Mijnbouwkundig Genootschap 28: 4362.Google Scholar
Hanssen, R.F., 2005. Satellite radar interferometry for deformation monitoring: a priori assessment of feasibility and accuracy. International Journal Of Applied Earth Observation and Geo-information, 6 (3-4): 253260.Google Scholar
Hettema, M., Papamichos, E. & Schutjens, P., 2002. Subsidence delay: field observations and analysis. Oil & Gas Science and Technology, Revue d'IFP, Energies Nouvelles 57 (5): 443458.CrossRefGoogle Scholar
Hoeksema, H.J., Mulder, H.P.J., Rommel, M.C., de Ronde, J.G. & de Vlas, J., 2004. Bodemdalingstudie Waddenzee 2004: Vragen en onzekerheden opnieuw beschouwd. RIKZ rapport 2004-025, 138 pp.Google Scholar
Houtenbos, A.P.E.M., Hounjet, M.W.A. & Barends, F.B.J., 2005. Subsidence from geodetic measurements in the Ravenna area. In: Special Volume, Proceedings 7th International Symposium on Land Subsidence (Shanghai). Millpress (Rotterdam): 7999.Google Scholar
Houtenbos, A.P.E.M., 2007. Bodemdalingsanalyse Ameland 1986-2007, precisie en betrouwbaarheid uit geodetische metingen. Published on the Internet.Google Scholar
Ketelaar, V.B.H., 2008. Satellite Radar Interferometry. In: Subsidence monitoring techniques, Springer (Berlin), 280 pp.Google Scholar
Ketelaar, V.B.H., Van der Veen, W. & Doornhof, D., 2011. Monitoring effecten van bodemdaling op Ameland-Oost, evaluatie na 23 jaar gaswinning. In: Publicatie Begeleidingscommissie Monitoring Bodemdaling Ameland, 10 2011: 929.Google Scholar
Kolymbas, D., 1977. A rate-dependent constitutive equation for soils. Mechanical Research Communications, 4: 367372.CrossRefGoogle Scholar
Lubinski, A., 1954. The theory of elasticity for porous bodies displaying a strong porous structure. In: Proceedings 2nd U.S. National Congress of Applied Mechanics: 247256.Google Scholar
Martin, J.C. & Serdengecti, S., 1984. Subsidence over oil and gas Fields, Geological Society of America, Reviews in Engineering Geology VI: 2335.Google Scholar
Merle, H.A., Kenthie, C.J.P., van Opstal, G.H.C, & Schneider, G.M.H., 1976. The Bachaquero study – a composite analysis of the behaviour of a compaction drive / solution gas drive reservoir. Journal of Petroleum Technology 27: 11071115.CrossRefGoogle Scholar
Muntendam-Bos, A.G., Kroon, I.C. & Fokker, P.A., 2008. Time-dependent inversion of surface subsidence due to dynamic reservoir compaction. Mathematical Geosciences 40: 159177.Google Scholar
NAM, 2005. Samenvatting bodemdaling door aardgaswinning, NAM-velden in Groningen, Friesland en het noorden van Drenthe, NAM B.V. EP200512202238, 11 pp.Google Scholar
NAM, 2006. MER Aardgaswinning Waddenzeegebied vanaf locaties Moddergat, Lauwersoog en Vierhuizen, 352 pp.Google Scholar
NAM, 2007. Modellering bodemdaling & beheersing bodemdalingssnelheid Wadden zee. In: Technische bijlage Meet- en Regelprotocol, NAM B.V. EP200610217860, 46 pp.Google Scholar
NAM, 2010. Bodemdaling door Aardgaswinning, NAM velden in Groningen, Friesland en het noorden van Drenthe, NAM B.V. EP201006302236: 43 pp.Google Scholar
NAM, 2011. In: Gaswinning vanaf de locaties Moddergat, Lauwersoog en Vierhuizen, resultaten uitvoering meet- en regelcyclus 2010, NAM B.V., 29 pp.Google Scholar
Nepveu, M., Kroon, I.C. & Fokker, P.A., 2010. Hoisting a red flag, an early warning system for exceeding subsidence limits. Mathematical Geosciences 42 (2): 187198.Google Scholar
Paar, W. & Geerts, F., 2008. The Hengelo Brine field revisited: The new Good Salt Mining Practice Guidelines. In: Proceedings Solution Mining Research Institute Spring 2008 Technical Conference, Porto, Portugal, 4 pp.Google Scholar
Pauget, L., Specia, F. & Boubazine, A., 2002. Interpretation and reliable of laboratory tests measuring porosity, pore compressibility and velocity on unconsolidated deep offshore reservoirs. In: SCA 2002/21: 12 pp.Google Scholar
Samieie-Esfahany, S., Hanssen, R.F., Van Thienen-Visser, K. & Muntendam-Bos, A.G., 2009. On the effect of horizontal deformation on INSAR subsidence estimates. In: Proceedings of Fringe 2009 Workshop, Frascati, Italy, 30 November - 4 12 2009, 7 pp.Google Scholar
Schoeman, P.K., 2006. Wadden Sea Islands (the Netherlands). Eurovision Case Study, Ministry of Transport, Public Works and Water Management, 18 pp.Google Scholar
Schothorst, C.J., 1982. Drainage and behaviour of peat soils. In: Proceedings of the symposium on peat lands below sea level, edited by de Bakker, H. and van den Berg, M.W.. ILRI-publication 30: 130163.Google Scholar
SPE Formation Evaluation 11 (2): 99107.Google Scholar
Settari, A., 2002. Reservoir Compaction. J. Petroleum Technology, 08 2002: 6269.CrossRefGoogle Scholar
Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M. & Mille, H.L. (eds), 2007. Climate Change 2007: The Physical Science Basis. Contribution of working group 1 to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press (Cambridge, United Kingdom and New York), 996 pp.Google Scholar
Speelman, H., Herman, P., Kabat, P., Rozema, J. & Tinbergen, J., 2012. Auditrapport Begeleidingscommissie Monitoring Bodemdaling Ameland. Waddenacademie, Leeuwarden, 13 pp.Google Scholar
Tarantola, A., 2005. Inverse problem theory and methods for model parameter estimation. Society for Industrial and Applied Mathematics (Philadelphia), 343 pp.Google Scholar
Teatini, P., Casteletto, N., Ferronato, M., Janna, C., Cairo, E., Mazorati, D., Colombo, D., Ferretti, A., Bagliani, A., & Botazzi, F., 2011. Geomechanical response to seasonal gas storage in depleted reservoirs: A case study in the Po River basin, Italy. Journal of Geophysical Research 116, 21 pp.Google Scholar
Teeuw, D., 1971. Prediction of reservoir compaction from laboratory compressibility data, SPE Journal, 09: 263271.Google Scholar
Terzaghi, K., 1923. Die Berechnung der Durchlassigkeitsziffer des Tones aus dem Verlauf der Hydrodynamischen Spannungserscheinungen, Sitzungsblad Akademie der Wissenshaften in Wien, Sitzungsberichte Abteilung IIa 132 (3-4): 125138.Google Scholar
Thompson, T. W., & Schatz, J.F., 1986. The time-dependent compaction of porous rocks and its consequences for laboratory testing. In: Proceedings 27th US Symposium on Rock Mechanics: 539546.Google Scholar
Van Noort, G., Drijkoningen, G.G., Arts, R.J., Thorbecke, J.W., Bullen, J.G. & Visser, J., 2009. Quantifying time-lapse effects of solutionsqueeze mining. In: Proceedings 71th EAGE Conference & Exhibition, Amsterdam, the Netherlands, 8-11 06 2009, 5 pp.Google Scholar
Van Opstal, G., 1974. The effect of base rock rigidity on subsidence due to compaction. In: Proceedings of the Third Congress of the International Society of Rock Mechanics, Denver, Colorado, 09 1-7, 1974. National Academy of Sciences, Washington, D.C. Volume II (B): 11021111.Google Scholar
Wang, Z. B., Louters, T., & De Vriend, H. J., 1995. Morphodynamic modelling for a tidal inlet in the Wadden Sea. Marine Geology 126: 289300.Google Scholar
Wang, Z.B., & Eysink, W.D., 2005. Abiotische effecten van bodemdaling in de Waddenzee door gaswinning. Delft Hydraulics, rapport Z3995, 67 pp.Google Scholar
Wilschut, F, Peters, E., Visser, K., Fokker, P.A. & van Hooff, P.M.E., 2011. Joint history matching of well data and surface subsidence observations using the ensemble Kalman filter: a field study. In: Proceedings SPE Reservoir Simulation Symposium, Woodlands, TX, USA, 21-23 02 2011.Google Scholar