Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-19T20:21:22.485Z Has data issue: false hasContentIssue false

Eemian marine mollusks and barnacles from Ristinge Klint, Denmark: hydrodynamics and oxygen deficiency

Published online by Cambridge University Press:  01 April 2016

Jan K. Nielsen*
Affiliation:
Statoil ASA, Exploration and Production Norway, P.O. Box 273, NO-7501 Stjørdal, Norway
S. Helama
Affiliation:
Department of Geology, P.O. Box 64, 00014 University of Helsinki, Finland
D. Rodland
Affiliation:
George Washington University, Department of Biological Sciences / Geological Sciences Program, 2029 G St. NW, Washington DC 20052, USA
Jasper K. Nielsen
Affiliation:
Department of Geology, University of Tromsø, Dramsvn. 201, N-9037 Tromsø, Norway
*
1Corresponding author. Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Taphonomic analysis of Eemian marine mollusks and barnacles at Ristinge Klint on the island of Langeland (Denmark) provides a distinct record of a temporal succession in preservation states. Four different states of preservation are recognized and related to a decreasing hydrodynamic regime in the depositional setting of the Eemian Baltic Sea. The states show a deepening-upward transition from shallow bay environment towards deeper offshore environment. The depositional setting changed significantly in hydrodynamics about 620 and 1550 years into the Eemian (130,000 to 115,000 years BP), according to biostratigraphic correlation with the varves of the Bispingen succession. The taxonomic composition of the paleofauna supports such a deepening-upward interpretation with a contemporaneous change from brackish water to nearly full marine conditions. The sea bottom was affected by at least one period of oxygen deficiency. The analysis also shows that the preservation of shells varies according to differences in shell structures and life habits. Here we show how these differences should be considered in paleoenvironmental reconstructions based on taphonomic analyses. Taphonomy may play an important role in understanding the hydrodynamic conditions within the Eemian Baltic Sea.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2007

References

Aigner, T., 1985. Storm Depositional Systems, Dynamic Stratigraphy in Modern and Ancient Shallow-Marine Sequences. Springer-Verlag (Berlin): 174 pp.Google Scholar
Aigner, T. & Reineck, H.-E., 1982. Proximality trends in modern storm sands from the Helgoland Bight (North Sea) and their implications for basin analysis. Senckenbergiana Maritima 14: 183215.Google Scholar
Alemany, J.A., 1986. Estudio comparado de la microestructura de la concha y el enrollamiento espiral en V. decussata (L. 1758) y V. rhomboides (Pennant, 1777) (Bivalvia: Veneridae). Bollettino Malacologico 22: 139152.Google Scholar
Alemany, J.A., 1987. Microestructura de la concha de Venerupis aurea (Gmelin, 1791). Revisión microestructural de la subfamilia Tapetinae (Bivalvia: Veneridae). Boletin de la Real Sociedad Española de Historia Natural, Seccion Geologica 83: 1524.Google Scholar
Alexandersson, E.T., 1972. Micritization of carbonate particles: processes of precipitation and dissolution in modern shallow-marine sediments. Bulletin of the Geological Institution of the University of Upsala, New Series 3: 201236.Google Scholar
Allen, J.R.L., 1984. Experiments on the settling, overturning and entrainment of bivalve shells and related models. Sedimentology 31: 227250.Google Scholar
Aller, R.C., 1982. Carbonate dissolution in nearshore terrigenous muds: The role of physical and biological reworking. Journal of Geology 90: 7995.CrossRefGoogle Scholar
Allman, M. & Lawrence, D.F., 1972. Geological Laboratory Techniques. Blandford Press (London): 355 pp.Google Scholar
Andersson, F., 1898. Über die quartäre Lagerserie des Ristinge Klint auf Langeland. Eine biologisch-stratigraphische Studie. Bulletin of the Geological Institution of the University of Upsala 3 (1896-1897): 115180.Google Scholar
Berner, R.A., 1980. Early Diagenesis: A Theoretical Approach. Princeton University Press (Princeton): 241 pp.Google Scholar
Berner, R.A., 1984. Sedimentary pyrite formation: An update. Geochimica et Cosmochimica Acta, 48: 605615.Google Scholar
Berner, R.A. & Raiswell, R., 1983. Burial of organic carbon and pyrite sulfur in sediments over Phanerozoic time: A new theory. Geochimica et Cosmochimica Acta 47: 855862.Google Scholar
Berner, R.A. & Westlich, J.T., 1985. Bioturbation and the early diagenesis of carbon and sulfur. American Journal of Science 285: 193206.Google Scholar
Brouwer, J., 1941. Over de werkelijke verschillen tusschen Paphia senescens Cocc. en Paphia aurea (Gmel). Basteria 6: 3748.Google Scholar
Bøggild, O.B., 1930. The shell structure of the mollusks. Det Kongelige Danske Videnskabernes Selskabs Skrifter, Naturvidenskab og Mathematik Afdeling, 9. Series, 2: 233326.Google Scholar
Cadée, G.C., 1994. Eider, shelduck, and other predators, the main producers of shell fragments in the Wadden Sea: palaeoecological implications. Palaeontology 37: 181202.Google Scholar
Caretto, P.G., 1985. Notizie sulla presenza dei Lamellibranchi Venerupis aurea (Gmelin, 1790) e V. geographica (Chemnitz, 1784) nel Pliocene piemontese. Atti della Società italiana di Scienze naturali e del Museo civico di Storia naturale di Milano 126: 283301.Google Scholar
Caretto, P.G., 1986. Il Lamellibranco Venerupis pullastra (Montagu, 1803) nel Pliocene del Piemonte (Italia, NW). Atti della Società italiana di Scienze naturali e del Museo civico di Storia naturale di Milano 127: 128140.Google Scholar
Carter, J.G., 1990. Evolutionary significance of shell microstructure in the Palaeotaxodonta, Pteriomorphia and Isofilibranchia (Bivalvia: Mollusca). In: Carter, J.G. (ed.): Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends. Van Nostrand Reinhold (New York): vol. 1: 136297.Google Scholar
Carter, J.G., Lutz, R.A. & Tevesz, M.J.S., 1990. Shell microstructural data for the Bivalvia. Part VI. Orders Modiomorphoida and Mytiloida. In: Carter, J.G. (ed.): Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends. Van Nostrand Reinhold (New York): vol. 1: 391411.Google Scholar
Cerulli-Irelli, S., 1908. Fauna malacologica mariana. Leptonidae, Galeommidae, Cardiidae, Chamidae, Cyprinidae, Veneridae. Palaeontographia Italica 14: 164.Google Scholar
Christensen, A.M., 1970. Feeding Biology of the sea star Astropecten irregularis . Ophelia 8: 1134.Google Scholar
Cocconi, G., 1873. Enumerazione sistematica dei Molluschi miocenici e pliocenici delle provincie di Parma e di Piacenza. Memorie della Accademia delle Scienze d’Istituto di Bologna, serie III, 3: 1372.Google Scholar
Drobner, E., Huber, H., Wächtershäuser, G., Rose, D. & Stetter, K.O., 1990. Pyrite formation linked with hydrogen evolution under anaerobic conditions. Nature 346: 742744.CrossRefGoogle Scholar
Eager, R.M.C., 1978. Shape and function of the shell: A comparison of some living and fossil bivalve molluscs. Biological Reviews 53: 169210.Google Scholar
Ehlers, J., 1978. Fine gravel analysis after the Dutch method as tested out on Ristinge Klint, Denmark. Bulletin of the Geological Society of Denmark 27: 157164.Google Scholar
Emery, K.O., 1968. Positions of empty pelecypod valves on the continental shelf. Journal of Sedimentary Petrology 38: 12641269.CrossRefGoogle Scholar
Fonselius, S.H., 1969. Hydrography of the Baltic deep basins III. Fishery Board of Sweden, Series Hydrography 23: 197.Google Scholar
Forchhammer, J.G., 1842. Oversigt over de i Aaret 1841 vundne Resultater af geognostiske Undersögelser. Oversigt over Det Kongelige danske Videnskabemes Selskabs Forhandlinger og dets Medlemmers Arbeider i Aaret 1842, Mödet den 13de Mai, 5: 6365.Google Scholar
Frenzel, P., 1993. Die Ostracoden und Foraminiferen des Pleistozänen Cyprinatons der Insel Rügen, NE-Deutschland/Ostsee. Meyniana 45: 6585.Google Scholar
Funder, S. & Balic-Zunic, T., 2004. Østersøen led også of iltsvind i Eem. Geologisk Tidsskrift 2004 (2): 2627.Google Scholar
Funder, S., Demidov, I. & Yelovicheva, Y., 2002. Hydrography and mollusc faunas of the Baltic and the White Sea-North Sea seaway in the Eemian. Palaeogeography, Palaeoclimatology, Palaeoecology 184: 275304.CrossRefGoogle Scholar
Futterer, E., 1978a. Hydrodynamic behaviour of biogenic particles. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 157: 3742.Google Scholar
Futterer, F., 1978b. Untersuchungen über die Sink- und Transportgeschwindigkeit biogener Hartteile. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 155: 318359.Google Scholar
Gmelin, J.F., 1791. Caroli Linnaei Systema Naturae per Regna Tria Naturae, Secundum Classes, Ordines, Genera, Species, cum Characteribus, Differentiis, Synonymis, Locis. Editio decima tertia, aucta, reformata. G.E. Beer (Lipsiae): 1 (6): 30213910.Google Scholar
Hallman, D.P., Flessa, K.W., Kowalewski, M., Hertweck, G., Aggen, J. & Carlton, J., 1996. Ternary taphograms and the comparative taphonomy of recent mollusks from the North Sea and the Gulf of California. Senckenbergiana Maritima 27: 6775.Google Scholar
Head, M.J. & Gibbard, P.L., 2000. Marine dinoflagellates and palaeoenvironments of the Last Interglacial (Late Pleistocene, Eemian) at Ristinge Klint, southern Denmark. Geoscience 2000. Manchester, U.K., p. 85. http://ggpc-jre1/celticwww/ Addabstracts.htm Google Scholar
Head, M.J., Gibbard, P.L. & Grøsfjeld, K., 2001. Dinoflagellates and hydrography of the last interglacial (Eemian, Mikulino) in the Baltic Sea-White Sea region. Baltic Sea Science Congress 2001. Stockholm, p. 79.Google Scholar
Houmark-Nielsen, M., 1987. Pleistocene stratigraphy and glacial history of the central part of Denmark. Bulletin of the Geological Society of Denmark 36: 1189.Google Scholar
Houmark-Nielsen, M., 1999. A lithostratigraphy of Weichselian glacial and interstadial deposits in Denmark. Bulletin of the Geological Society of Denmark 46: 101114.Google Scholar
Jensen, J., 1990. Increased abundance and growth of the suspension-feeding bivalve Corbula gibba in a shallow part of the eutrophic Limfjord, Denmark. Netherlands Journal of Sea Research 27: 101108.CrossRefGoogle Scholar
Jessen, K. & Milthers, V., 1928. Interglacial freshwater deposits in Jutland and northwest Germany. Danmarks Geologiske Undersøgelse, II. Række, 48: 1380.Google Scholar
Johnson, R.G., 1957. Experiments on the burial of shells. Journal of Geology 65: 527535.CrossRefGoogle Scholar
Johnstrup, F., 1882. Nogle Iagttagelser over Glacialphænomenerne og Cyprina-Leret i Danmark. Indbydelsesskrift til Kjøbenhavns Universitets fest i anledning af Hans Majestæt Kongens fødselsdag d. 8de April 1882. J.H. Schultz (Kjøbenhavn): 90 pp.Google Scholar
Kidwell, S.M. & Bosence, D.W.J., 1991. Taphonomy and time-averaging of marine shelly faunas. In: Allison, P.A. & Briggs, D.E.G. (eds): Taphonomy: Releasing the Data Locked in the Fossil Record. Plenum Press (New York): 115209.Google Scholar
Kidwell, S.M. & Holland, S.M., 1991. Field description of coarse bioclastic fabrics. Palaios 6: 426434.Google Scholar
Kjær, K.H., Houmark-Nielsen, M. & Richardt, N., 2003. Ice-flow patterns and dispersal of erratics at the southwestern margin of the last Scandinavian Ice Sheet: signature of palaeo-ice streams. Boreas 32: 130148.CrossRefGoogle Scholar
Knudsen, K.L., 1994. The marine Quaternary in Denmark: a review of new evidence from glacial-interglacial studies. Bulletin of the Geological Society of Denmark 41: 203218.Google Scholar
Knudsen, K.L., 2004. Marint interglacial i Danmark - nyt og gammelt. Geologisk Tidsskrift 2004, no. 2: p. 25.Google Scholar
Konradi, P.B., 1976. Foraminifera in Eemian deposits at Stensigmose, southern Jutland. Danmarks Geologiske Undersøgelse, II. Række, 105: 154.CrossRefGoogle Scholar
Kowalewski, M., Flessa, K.W. & Hallman, D.P., 1995. Ternary taphograms: triangular diagrams applied to taphonomic analysis. Palaios 10: 478483.Google Scholar
Kristensen, P., Gibbard, P., Knudsen, K.L. & Ehlers, J., 2000. Last interglacial stratigraphy at Ristinge Kiint, South Denmark. Boreas 29: 103116.Google Scholar
Lewy, Z., 1975. Early diagenesis of calcareous skeletons in the Baltic Sea, Western Germany. Meyniana 27: 2933.Google Scholar
Lewy, Z. & Samtleben, C. 1979. Functional morphology and palaeoecological significance of the conchiolin layers in corbulid pelecypods. Lethaia 12: 341351.Google Scholar
Madsen, V., 1916. Ristinge Klint. Nogle nye Iagttagelser. Danmarks Geologiske Undersøgelse, TV. Række, 1, no. 2: 132.Google Scholar
Madsen, V., Nordmann, V. & Hartz, N., 1908. Eem-zonerne. Studier over Cyprinaleret og andre Eem-Aflejringer i Danmark, Nord-Tyskland og Holland. Danmarks Geologiske Undersøgelse, II. Række, 17: 1302, with an atlas.Google Scholar
Müller, H., 1974. Pollenanalytische Untersuchungen und Jahresschichtenzählungen an der eem-zeitlichen Kieselgur von Bispingen/Luhe. Geologisches Jahrbuch A21: 149169.Google Scholar
Nielsen, J.K., 2004. Taphonomy in the light of intrinsic shell properties and life habits: marine bivalves from the Eemian of northern Russia. Paläontologische Zeitschrift 78: 5372.Google Scholar
Nielsen, J.K. & Funder, S. 2003. Taphonomy of Eemian marine molluscs and acorn barnacles from eastern Arkhangelsk region, northern Russia. Palaeogeography, Palaeoclimatology, Palaeoecology 191: 139168.CrossRefGoogle Scholar
Nordmann, V., 1908. Molluskfaunaen i Cyprinaleret og Mellem-Europas andre Eem-aflejringer. Studier over Interglaciale aflejringer i Danmark, Holland og Nord-Tyskland. Doctoral thesis, University of Copenhagen. C.A. Reitzel (Kjøbenhavn): 157 pp. (form part of Madsen et al., 1908).Google Scholar
Nordmann, V., 1913. Tapes senescens Doederlein og Tapes aureus Gm. var. eemiensis Nordm. Videnskabelige Meddelelser fra Dansk Naturhistorisk Forening 65: 287300.Google Scholar
Nordmann, V., 1928. La position stratigraphique des Dépôts d’Eem. Danmarks Geologiske Undersøgelse II. Række, 47: 581.Google Scholar
Nordmann, V., 1931. Eem-Havet. Naturens Verden 15: 302324.Google Scholar
Oeschger, R. & Storey, K.B., 1993. Impact of anoxia and hydrogen sulphide on the metabolism of Arctica islandica L. (Bivalvia). Journal of Experimental Marine Biology and Ecology 170: 213226.Google Scholar
Panetta, P. & Dell’Angelo, B., 1977. I Molluschi dei fondi detritici costieri del Golfo di Taranto. In: Cinelli, F., Fresi, E. and Mazzella, L. (eds): Atti IX Congresso S.I.B.M., Lacco Ameno d’Ischia (Napoli) 1977: 303314.Google Scholar
Pearson, T.H. & Rosenberg, R., 1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanography and Marine Biology: an Annual Review 16: 229311.Google Scholar
Pelosio, G. & Raffi, S., 1974. Osservazioni su Arctica islandica ed altri Lamellibranchi del Calabriano dell’Emilia occidentale. Acta Naturalia de l’Ateneo Parmense 10: 347367.Google Scholar
Raiswell, R. & Berner, R.A., 1985. Pyrite formation in euxinic and semi-euxinic sediments. American Journal of Science 285: 710724.Google Scholar
Reineck, H.E. & Gerdes, G., 1996. A seaward prograding siliciclastic sequence from upper tidal flats to salt marsh facies (southern North Sea). Facies 34: 209218.Google Scholar
Richter, R., 1942. Der Einkippungsregel. Senckenbergiana 25: 181206.Google Scholar
Rodland, D.L. & Bottjer, D.J., 2001. Biotic recovery from the end-Permian mass extinction: Behavior of the inarticulate brachiopod Lingula as a disaster taxon. Palaios 16: 95101.Google Scholar
Rogalla, N.S. & Amler, M.R.W., 2003. Abrasion an rezenten Bivalvenschalen. Geologica et Paleontologica 37: 107148.Google Scholar
Rosenberg, R., 1980. Effect of oxygen deficiency on benthic macrofauna in fjords. In: Freeland, H.J., Farmer, D.M. & Levings, C.D. (eds): Fjord Oceanography. Plenum Press (New York): 499514.CrossRefGoogle Scholar
Rosenkrantz, A., 1945. Nye Bidrag til Forstaaelsen af Ristinge Klints Opbygning. Meddelelser fra Dansk Geologisk Forening 10 (1944): 431435.Google Scholar
Salazar-Jimenez, A., Frey, R.W. & Howard, J.D., 1982. Concavity orientations of bivalve shells in estuarine and nearshore shelf sediments, Georgia. Journal of Sedimentary Petrology 52: 565586.Google Scholar
Seidenkrantz, M.-S. & Knudsen, K.L., 1997. Eemian climatic and hydrographical instability on a marine shelf in northern Denmark. Quaternary Research 47: 218234.Google Scholar
Seidenkrantz, M.-S., Knudsen, K.L. & Kristensen, P., 2000. Marine late Saalian to Eemian environments and climatic variability in the Danish shelf area. Geologie en Mijnbouw, Netherlands Journal of Geosciences 79: 335343.CrossRefGoogle Scholar
Sjørring, S., 1983. Ristinge Klint. In: Ehlers, J. (ed.): Glacial Deposits in North-West Europe. >A.A. Balkema (Rotterdam): 219226.Google Scholar
Sjørring, S., Nielsen, P.E., Frederiksen, J., Hegner, J., Hyde, G., Jensen, J.B., Mogensen, A. & Vortisch, W., 1982. Observationer fra Ristinge Klint, feltog laboratorieundersøgelser. Dansk Geologisk Forening, Årsskrift for 1981: 135149.Google Scholar
Sorgenfrei, T., 1946. Mindre Meddelelser fra Danmarks Geologiske Undersøgelses Borearkiv. Meddelelser fra Dansk Geologisk Forening 10 (1945): 561590.Google Scholar
Tebble, N.. 1976. British Bivalve Seashells. A handbook for Identification. Her Majesty’s Stationary Office (Edinburgh): 2. edition, 212 pp.Google Scholar
Theede, H., 1973. Comparative studies on the influence of oxygen deficiency and hydrogen sulphide on marine bottom invertebrates. Netherlands Journal of Sea Research 7: 244252.Google Scholar
Wilkin, R.T. & Barnes, H.L., 1996. Pyrite formation by reactions of iron monosulfides with dissolved inorganic and organic sulfur species. Geochimica et Cosmochimica Acta 60 (21): 41674179.Google Scholar
Wilson, R.L., 1965. Techniques and materials used in the preparation of vertebrate fossils. Curator 8: 135143.Google Scholar
Yonge, C.M., 1946. On the habits and adaptations of Aloidis (Corbula) gibba . Journal of the Marine Biological Association of the United Kingdom 26: 358376.Google Scholar
Zuschin, M., Stachowitsch, M. & Stanton, R.J. Jr., 2003. Patterns and processes of shell fragmentation in modern and ancient marine environments. Earth-Science Reviews 63: 3382.Google Scholar