Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-18T23:06:21.643Z Has data issue: false hasContentIssue false

The Eemian interglacial in the North European plain and adjacent areas

Published online by Cambridge University Press:  01 April 2016

Charles Turner*
Affiliation:
Department of Earth Sciences, The Open University, Milton Keynes MK7 6AA UK & The Godwin Institute of Quaternary Research, Department of Geography, University of Cambridge, England; e-mail: [email protected]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Many small deposits of Eemian age, including the stratotype, are found right across the North European plain. In adjacent areas, this interglacial is known by local names such as Ipswichian (Britain), Luhe or Ribains (France), Riss-Würm interglacial (Alps) and Mikulinian (Poland and Russia). It correlates primarily with MIS 5e of the deep-sea stratigraphy, though boundaries may not be exactly the same. Basins containing Eemian sediments rest directly on morainic deposits of all three Saalian ice advances, which must all, therefore, fall within MIS 6.

Indicator species of both plants and animals suggest that mean July temperatures in the early-temperate part of the interglacial were warmer than during the Holocene. For many years, palynologists have recognised a very uniform succession of temperate tree acme pollen zones and a substantial late-temperate expansion of Carpinus as hallmarks of this interglacial across much of northern Europe. In southern England, however, deposits with a similar pollen signature are being recognised on stratigraphie and palaeontological grounds as characterising not only the Ipswichian but also the previously poorly-defined interglacial stage correlating with MIS 7. High Carpinus values are known from these latter sites and from the Le Bouchet inter-glacial of the French Massif Central, also clearly correlated with MIS 7. Thus stratigraphie confusion and misinterpretations may have occurred at supposedly Eemian/Ipswichian sites unrelated to the glacial stratigraphy or to deep continuous records.

The uniformity and rapid development of Eemian vegetational successions may be ascribed to (1) rapid warming and the lack of any late-glacial climatic oscillation on the scale of the Younger Dryas, (2) the development of an open marine connection in the first half of the interglacial from the English Channel across the North and Baltic Seas to the White Sea and the Arctic Ocean, and (3) the occurrence of Saalian per-glacial refugia for Carpinus, not only in the Balkans but also on the Iberian peninsula, permitting much more rapid northward colonisation of Europe during this interglacial.

The question of climatic events within the Eemian is far from settled. Not only is the ice-core evidence ambiguous and awaiting further clarification, but the scale and synchroneity of proposed events at different continental sites in both northern and southern Europe show no clear pattern at present; clearly there is a need for more detailed investigation and interpretation. Likewise there is ongoing debate about the duration of this interglacial and its detailed correlation with the deep-sea core record and events within the North Atlantic Ocean.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2000

References

Aalbersberg, G. & Litt, T., 1998. Multiproxy climatic reconstructions for the Eemian and Early Weichselian. Journal of Quaternary Science 13: 367390.3.0.CO;2-I>CrossRefGoogle Scholar
Andersen, S.T., 1965. Interglacialer og interstadialer i Danmarks kvartaer. Meddelser fra Dansk Geologisk Forening 15: 486506.Google Scholar
Andersen, S.T., 1966. Interglacial vegetational succession and lake development in Denmark. The Paleobotanist 15: 117127.Google Scholar
Andersen, S.T., 1975. The Eemian freshwater deposit at Egern-sund, South Jylland, and the Eemian landscape development in Denmark. Danmarks geologische Undersøgelse A 1974: 4970.Google Scholar
Antoine, P., 1994. The Somme valley terrace system (northern France): a model of river response to Quaternary climatic variations since 800,000 BP. Terra Nova 6: 453464.CrossRefGoogle Scholar
Atkinson, T.C., Briffa, K.R. & Coope, G.R., 1987. Seasonal temperatures in Britain during the past 22,000 years reconstructed using beetle remains. Nature 352: 587592.CrossRefGoogle Scholar
Bartlein, P.J., Prentice, I.C. & Webb, T., 1986. Climatic response surfaces from pollen data for some eastern North American taxa. Journal of Biogeography 13: 3557.CrossRefGoogle Scholar
Behre, K. 1974. Die Vegetation im Spätpleistozän von Osterwan-na/Niedersachsen. Geologisches Jahrbuch A 18: 336.Google Scholar
Behre, K.E. & Lade, U., 1986. Eine Folge von Eem und 4 Weich-sel-Interstadialen in Oerel/Niedersachsen und ihr Vegetations-ablauf. Eiszeitalter und Gegenwart 36: 1136.Google Scholar
Björck, S., Noe-Nygaard, N., Wolin, J., Houmark-Nielsen, M., Hansen, H. Jørgen & Snowball, I., 2000. Lake development, hydrology and climate: a multi-stratigraphic study of the Hollerup site in Denmark. Quaternary Science Reviews 19: 509536.CrossRefGoogle Scholar
Bridgland, D.R., 1994. Quaternary of the Thames. Geological Conservation Review Series 7. Chapman & Hall: 441 pp.Google Scholar
Cleveringa, P., Meijer, T., Van Leeuwen, R.J.W., De Wolf, K., Pouwer, R., Lissenberg, T. & Burger, A.W., 2000. The Eemian type locality at Amersfoort in the central Netherlands: redeployment of old and new data. In: Van Kolfschoten, Th. & Gibbard, PL. (eds.): The Eemian – local sequences, global perspectives. Geologie en Mijnbouw / Netherlands Journal of Geosciences 79: 197216 (this issue).Google Scholar
Coope, G.R., 1974. Interglacial Coleóptera from Bobbitshole, Ipswich, Suffolk. Journal of the Geological Society of London 130: 333340.CrossRefGoogle Scholar
Coope, G.R., 1990: The invasion of Northern Europe during the Pleistocene by Mediterranean species of Coleoptera. In: Di Castri, F., Hansen, A.H. & Debussche, M. (eds.): Biological Invasions in Europe and the Mediterranean Basin. Kluwer (Dordrecht): 203215.Google Scholar
Coxon, P., 1993. Irish Pleistocene biostratigraphy. Irish Journal of Earth Sciences 12: 83105.Google Scholar
Dansgaard, W., Johnsen, S.J., Clausen, H.B., Dahl-Jensen, D., Gundestrup, N.S., Hammer, CU., Hvidberg, C.S., Steffensen, J.P., Sveinbjörnsdottir, A.E., Jouzel, J. & Bond, G., 1993. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364: 218220.Google Scholar
De Beaulieu, J.-L. & Reille, M., 1984. A long Upper Pleistocene pollen record from Les Echets near Lyons, France. Boreas 13: 111131.Google Scholar
De Beaulieu, J.-L. & Reille, M., 1989. The transition from temperate phases to stadials in the long Upper Pleistocene sequence from Les Echets (France). Palaeogeography, Palaeoclimatology, Paiaeoecology 72: 147159.Google Scholar
De Beaulieu, J.-L. & Reille, M., 1992a. The last climatic cycle at La Grande Pile (Vosges). A new pollen profile. Quaternary Science Reviews 11:431438.Google Scholar
De Beaulieu, J.-L. & Reille, M., 1992b. Long Pleistocene pollen sequences from the Velay Plateau (Massif Central, France). I Rib-ains maar. Vegetation History and Archaeobotany 1: 233242.Google Scholar
De Beaulieu, J.-L. & Reille, M., 1995. Pollen records from the Velay craters: a review and correlation of the Holsteinian Interglacial with isotopie stage 11. Mededelingen Rijks Geologische Dienst 52: 5970.Google Scholar
Ehlers, J., 1983. The glacial history of north-west Germany. In: Ehlers, J. (ed.): Glacial deposits in North-west Germany. Balkema (Rotterdam): 229238.Google Scholar
Ehlers, J., Kozarski, S. & Gibbard, P.L. (eds.), 1995. Glacial deposits in North-East Europe. Balkema (Rotterdam): 626 pp.Google Scholar
Ehlers, J. & Stephan, H.-J., 1983. North German till types. In: Ehlers, J. (ed.): Glacial deposits in North-west Germany. Balkema (Rotterdam): 239247.Google Scholar
Erd, K., 1970. Pollenanalytical classification of the Middle Pleistocene in the German Democratic Republic. Palaeogeography, Palaeoclimatology, Paiaeoecology 8: 129145.CrossRefGoogle Scholar
Felix-Henningsen, P., 1983. Palaeosols and their stratigraphical interpretation. In: Ehlers, J. (ed.): Glacial deposits in North-west Germany. Balkema (Rotterdam): 289295.Google Scholar
Field, M.H., Huntley, B. & Müller, H., 1994. Eemian climate fluctuations observed in a European pollen record. Nature 371: 779783.Google Scholar
Firbas, F., 1949. Waldgeschichte Mitteleuropas, I. Fischer (Jena): 480 pp.Google Scholar
Follieri, M., Magri, D. & Sadori, L., 1988. 250,000 year pollen record from Valle di Castiglione (Roma). Pollen et Spores 30: 329356.Google Scholar
Frogley, M.R., Tzedakis, P.C. & Heaton, T.H.E., 1999. Climatic variability in northwest Greece during the last interglacial. Science 285: 18861888.Google Scholar
Gibbard, P.L. 1995. The Pleistocene history of the Lower Thames valley. Cambridge University Press (Cambridge): 229 pp.Google Scholar
Glaister, C.G. & Gibbard, PL., 1998. Pollen stratigraphy of Late Pleistocene marine sediments at Nørre Lyngby and Skagen, North Denmark. Quaternary Science Reviews 17: 839854.Google Scholar
Grichuk, V.P., 1969. An experiment in reconstructing some characteristics in climate in the Northern hemisphere during the At-lanticum period of Holocene (in Russian). In: Neustadt, M.J. (ed.): Holocene. Akademia Nauk (Moscow): 4157.Google Scholar
Grichuk, V.P., 1984. Late Pleistocene vegetational history. In: Velichko, A. A. (ed.): Late Quaternary environments of the Soviet Union. University of Minnesota Press (Minneapolis): 155178.Google Scholar
GRIP Members, 1993. Climate instability during the last inter-glacial period recorded in the GRIP ice core. Nature 364: 203207.Google Scholar
Grootes, P.M., Stuiver, M., White, J.W.C., Johnsen, S. & Jouzel, J., 1993. Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature 366: 552554.CrossRefGoogle Scholar
Hahne, J., Kemle, S., Merkt, J. & Meyer, K.-D., 1994. Eem-, weichsel- und saalezeitliche Ablagerungen der Bohrung ‘Quaken-brück GE 2’. Geologisches Jahrbuch A 134: 969.Google Scholar
Hall, A.R., 1980. Late Pleistocene deposits at Wing, Rutland. Philosophical Transactions of the Royal Society of London B 289: 135164.Google Scholar
Hollin, J.T., 1977. Thames interglacial sites, Ipswichian sea levels and Antarctic ice surges. Boreas 6: 3352.Google Scholar
Huntley, B., 1993. The use of climate response surfaces to reconstruct palaeoclimate from Quaternary pollen and plant macro-fossil data. Philosophical Transactions of the Royal Society of London B 341: 215224.Google Scholar
Huntley, B. & Birks, H.J.B., 1983. An atlas of past and present pollen maps for Europe: 0-13,000 years ago. Cambridge University Press (Cambridge): 667 pp.Google Scholar
Iversen, J., 1944. Viscum, Hedera and Ilex as climate indicators. Geologiska Föreningens Förhandlingar 66: 463483.Google Scholar
Iversen, J., 1958. The bearing of glacial and interglacial epochs on the formation and extinction of plant taxa. Uppsala Universitetet Årsskrift 6: 210215.Google Scholar
Jessen, K. & Milthers, V., 1928. Stratigraphical and palaeontologi-cal studies of interglacial freshwater deposits in Jutland and Northwest Germany. Danmarks geologische Undersøgelse II 48: 1380.Google Scholar
Knudsen, K.L., 1994. The marine Quaternary in Denmark: a review of new evidence from glacial-interglacial studies. Bulletin of the Geological Society of Denmark 41: 203218.Google Scholar
Kukla, G., McManus, J.F., Rousseau, D.-D. & Chuine, I., 1997. How long and how stable was the Last Interglacial? Quaternary Science Reviews 16: 605612.Google Scholar
Litt, T, 1990. Pollenanalytische Untersuchungen zur Vegetations-und Klimaentwicklung während des Jungpleistozäns in den Becken von Gröbern und Grabschütz. Altenburger naturwissenschaftliche Forschungen 5: 92105.Google Scholar
Litt, T., Junge, F.W. & Böttger, T., 1996. Climate during the Eemi-an in north-central Europe – a critical review of palaeobotanical and stable isotope data from central Germany. Vegetation History and Archaeobotany 5: 247256.Google Scholar
Litt, T. & Turner, C., 1993. Arbeitsergebnisse der Subkommission für Europäische Quartärstratigraphie: Die Saalesequenz in der Typusregion (Berichte der SEQS 10). Eiszeitalter und Gegenwart 37: 145148.Google Scholar
Maddy, D., Keen, D.H., Bridgland, D.R. & Green, CR., 1991. A revised model for the Pleistocene development of the River Avon, Warwickshire. Journal of the Geological Society of London 148: 473484.Google Scholar
Mamakowa, K., 1989. Late Middle Polish glaciation, Eemian and Early Vistulian vegetation at Imbramowice near Wrocław and the pollen stratigraphy of this part of the Pleistocene in Poland. Acta Palaeobotanica 29: 11176.Google Scholar
Mangerud, J., Sonstegaard, E., Sejrup, H.-P. & Haldorsen, S., 1981. A continuous Eemian-Early Weichselian sequence containing pollen and marine fossils at Fjøsanger, western Norway. Boreas 10: 138205.Google Scholar
Martinson, D.G., Pisias, N.G., Hays, J.D., Imbrie, J., Moore, TC. & Shackleton, N.J. 1987. Age dating and the orbital theory of the ice ages: development of a high-resolution 0 to 300,000-year chronostratigraphy. Quaternary Research 27: 129.Google Scholar
Meijer, T., 1998. References of relevant publications about Eemian deposits: a base for a European Eemian bibliography. SEQS Symposium (Kerkrade, the Netherlands, 1998): 126 pp.Google Scholar
Meijer, T., & Preece, R.C., 2000. A review of the occurrence of Corbicula in the Pleistocene of North-west Europe. Geologie en Mijnbouw / Netherlands Journal of Geosciences 79: 241255 (this issue).Google Scholar
Menke, B., 1992. Eeminterglaziale und nacheiszeitliche Wälder in Schleswig-Holstein. Berichte des Geologischen Landesamtes Schleswig-Holstein 1:28101.Google Scholar
Menke, B. &Tynni, R., 1984. Das Eeminterglazial und das Weich-selfrühglazial von Rederstall/Dittmarschen und ihre Bedeutung für die mitteleuropäische Jungpleistozängliederung. Geologisches Jahrbuch A 76: 3120.Google Scholar
Moscariello, A., Ravazzi, C., Brauer, A., Chiesa, S., De Beaulieu, J.-L., Mangili, C., Reille, M. & Rossi, S. (in press). A long lacustrine record from the Pianico-Sellere basin (Middle-Late Pleistocene, Northern Italy. Quaternary International.Google Scholar
Müllier, H., 1974a. Pollenanalytische Untersuchungen und Jahres-schichtenzählungen an der eemzeitlichen Kieselgur von Bispin-gen/Luhe. Geologisches Jahrbuch A 21, 149169.Google Scholar
Müller, H., 1974b. Pollenanalytische Untersuchungen und Jahres-schichtenzählungen an der holsteinzeitlichen Kieselgur von Münster-Breloh. Geologisches Jahrbuch A 21, 107140.Google Scholar
NLfB (Niedersächsisches Landesamt für Bodenforschung), 1993. Quartärgeologische Übersichtskarte von Niedersachsen und Bremen, 1 : 500 000. NLfB (Hannover).Google Scholar
Phillips, L., 1974. Vegetational history of the Ipswichian/Eemian interglacial in Britain and continental Europe. New Phytologist 73: 589604.Google Scholar
Picard, K., 1960. Zur Untergliderung der ‘Saalevereisung’ im Wes-ten Schleswig-Holsteins. Zeitschrift der. deutschen geologischen Gesellschaft 112: 316352.Google Scholar
Pons, A., Guiot, J., De Beaulieu, J.-L. & Reille, M., 1992. Recent contributions to the climatology of the last glacial-interglacial cycle based on french pollen sequences. Quaternary Science Reviews 11:439448.Google Scholar
Preece, R.C., 1995. Mollusca from interglacial sediments at three critical sites in the Lower Thames. In: Bridgland, D.R., Allen, P. & Haggart, B.A. (eds.): The Quaternary of the lower reaches of the Thames. Quaternary Research Association Field Guide (Durham): 5360.Google Scholar
Preece, R.C., 1999. Mollusca from last interglacial fluvial deposits of the river Thames at Trafalgar Square, London. Journal of Quaternary Science 14: 7789.3.0.CO;2-U>CrossRefGoogle Scholar
Reille, M. & De Beaulieu, J.-L., 1990. Pollen analysis of a long upper Pleistocene continental sequence in a Velay maar. Palaeo-geography, Palaeoclimatology, Palaeoecology 80: 3548.Google Scholar
Reille, M. & De Beaulieu, J.-L., 1995. Long Pleistocene pollen records from the Praclaux Crater, South-Central France. Quaternary Research 44: 205215.Google Scholar
Reille, M., De Beaulieu, J.-L., Andrieu, V., Guenet, P. & Goeury, C., 1998. A long pollen record from Lac du Bouchet Massif, central France: for the period ca. 325 to 100 ka BP (OIS 9c to OIS 5e). Quaternary Science Reviews 17: 11071124.Google Scholar
Sánchez Gõni, M.F., Eynaud, R., Turon, J.L. & Shackleton, N.J., 1999. High resolution palynological record off the Iberian margin: direct land-sea correlation for the last interglacial complex. Earth and Planetary Science Letters 171: 123137.Google Scholar
Schreve, D. C. 1997. Mammalian biostratigraphy of the later Middle Pleistocene in Britain. Unpublished Ph.D. thesis University of London.Google Scholar
Seidenkrantz, M.-S., Kristensen, P. & Knudsen, K.L., 1995. Marine evidence for climatic stability during the last interglacial in shelf records from northwest Europe. Journal of Quaternary Science 10:7782.Google Scholar
Selle, W., 1962. Geologische und vegetationskundliche Unter-suchungen an einigen wichtigen Vorkommen des letzten Inter-glazials in Nordwestdeutschland. Geologisches Jahrbuch 79: 295352.Google Scholar
Shackleton, N.J., 1969. The last interglacial in the marine and terrestrial records. Proceedings of the Royal Society of London B 174: 135154.Google Scholar
Simpson, I.M. & West, R.G., 1958. On the stratigraphy and paleobotany of a late-Pleistocene organic deposit at Chelford, Cheshire. New Phytologist 57: 23950.CrossRefGoogle Scholar
Stephan, H.-J. & Menke, B., 1994. Das Pleistozän in Schleswig-Holstein. Berichte des Geologischen Landesamtes Schleswig-Holstein 3: 1962.Google Scholar
Stremme, H.E., 1964. Die Warmzeiten vor und nach derWarthe-Eiszeit in ihren Bodenbildungen bei Böxlund (westl. Flensburg). Neues Jahrbuch für Geologie und Paläontologie, Monatshefte: 237247.Google Scholar
Stremme, H.E. & Menke, B., 1980. Quartâr-Excursion in Schleswig-Holstein. Geologisches Landesamt (Kiel): 132 pp.Google Scholar
Taylor, K.C., Hammer, C.U., Alley, R.B., Clausen, H.B., Dahl-Jensen, D., Gow, A.J., Gundestrup, N.S., Kipf-Stuhl, J., Moore, J.C. & Waddington, E.D., 1993. Electrical conductivity measurements from the GISP2 and GRIP Greenland ice cores. Nature 366: 549552.Google Scholar
Turner, C., 1970. The Middle Pleistocene deposits at Marks Tey, Essex. Philosophical Transactions of the Royal Society of London B 257: 373440.Google Scholar
Turner, C., 1998. Volcanic maars, long Quaternary sequences and the work of the INQUA Subcommission on European Quaternary Stratigraphy. Quaternary International 47/48: 4149.Google Scholar
Turner, C. &West, R.G., 1968. The subdivision and zonation of interglacial periods. Eiszeitalter und Gegenwart 19: 93101.Google Scholar
Tzedakis, P.C., 1994. Vegetation change through glacial-interglacial cycles: a long pollen sequence perspective. Philosophical Transactions of the Royal Society of London B 345: 403432.Google Scholar
Urban, B., 1995. Palynological evidence of younger Middle Pleistocene interglacials (Holsteinian, Reinsdorf and Schöningen) in the Schöningen open cast lignite mine (eastern Lower Saxony, Germany). Mededelingen Rijks Geologische Dienst 52: 175186.Google Scholar
Van Kolfschoten, Th., Roebroeks, W. & Vandenberghe, J. 1993. The Middle and Late Pleistocene sequence at Maastricht-Belvédère: the type locality of the Belvédère Interglacial. Mededelingen Rijks Geologische Dienst Nieuwe Serie 47: 8191.Google Scholar
Van Leeuwen, R.J.W., Beets, D., Bosch, J.H.A., Burger, A.W., Cle-veringa, P., Van Harten, D., Herngreen, G.F.W., Kruk, R.W., Langereis, C.G., Meijer, T., Pouwer, R., & De Wolf, H., 2000. Stratigraphy and integrated facies analysis of the Eemian in Amsterdam-Terminal. In: Van Kolfschoten, Th. & Gibbard, PL. (eds.): The Eemian – local sequences, global perspectives. Geologie en Mijnbouw / Netherlands Journal of Geosciences 79: 161196 (this issue).Google Scholar
Wansa, S. & Wimmer, R., 1990. Geologie des Jungpleistozäns von Grõbern und Grabschütz. Altenburger naturwissenschaftliche Forschungen 5: 4991.Google Scholar
West, R.G., 1957. Interglacial deposits at Bobbitshole, Ipswich. Philosophical Transactions of the Royal Society of London B 241:131.Google Scholar
West, R.G., 1969. Pollen analyses from interglacial deposits at Ave-ley and Grays, Essex. Proceedings of the Geologists’ Association 80:271282.Google Scholar
West, R.G., 1980. Pleistocene forest history in East Anglia. New Phytologist 85: 571622.Google Scholar
West, R.G., Lambert, C.A. & Sparks, B.W., 1964. Interglacial deposits at Ilford, Essex. Philosophical Transactions of the Royal Society of London B 247: 185212.Google Scholar
Woillard, G.M., 1975. Recherches palynologiques sur le Pléistocène dans l’est de la Belgique et dans les Vosges Lorraines. Acta Geographica Lovaniensia 14: 1118.Google Scholar
Woillard, G.M., 1978. Grande Pile peat bog: A continuous pollen record from the last 140.000 years. Quaternary Research 9: 121.Google Scholar
Zagwijn, W.H., 1961. Vegetation, climate and radiocarbon datings in the Late Pleistocene of the Netherlands. Part 1 : Eemian and Early Weichselian. Mededelingen Geologische Stichting Nieuwe Serie 14: 1545.Google Scholar
Zagwijn, W.H., 1995. Eem Valley near Amersfoort – type-site of the Eemian. In: Schirmer, W. (ed.): Quaternary field trips in Central Europe, 2, Field trips on special topics, INQUA, XIV International Congress (Berlin, 1995). F. Pfeil (München): 651653.Google Scholar
Zagwijn, W.H., 1996. An analysis of Eemian climate in western and central Europe. Quaternary Science Reviews 15: 451469.Google Scholar
Ziemus, H. 1980. Palynologische Untersuchungen am limnischen Jungpleistozän von Haalmoor bei Burg/Dithmarschen (Schleswig-Holstein). Schriften Naturwissenschaftlicher Verein für Schleswig-Holstein 50: 7180.Google Scholar
Ziemus, H. 1981. Palynologische Untersuchungen am ter-restrischen Jungpleistozän von Schalkholz, Kreis Dithmarschen (Schleswig-Holstein). Schriften Naturwissenschaftlicher Verein für Schleswig-Holstein 51: 2536.Google Scholar