Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-24T20:21:26.641Z Has data issue: false hasContentIssue false

Downstream changes of meandering styles in the lower reaches ofthe River Vecht, the Netherlands

Published online by Cambridge University Press:  19 June 2017

H.P. Wolfert*
Affiliation:
Alterra, Wageningen University and Research Centre, P.O. Box 47, 6700 AA Wageningen, the Netherlands
G.J. Maas
Affiliation:
Alterra, Wageningen University and Research Centre, P.O. Box 47, 6700 AA Wageningen, the Netherlands
*
*Corresponding author. Email: [email protected]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The morphodynamics of the lower River Vecht, the Netherlands, and theinfluence of geomorphological setting and bank composition on meandermigration were studied by means of reconstructing the pre-channelizationlandform configuration on a scale of 1 : 25,000, using historical maps from1720, 1850 and 1890 A.D. and other data.

A downstream sequence of reaches was observed, each with a typical fluvialstyle and channel migration rate: (a) a narrow meander belt and a highlysinuous channel with intermediate migration rate, in the middle of anextensive floodbasin; (b) a wide meander belt and high rates of lateralchannel migration, especially where large meanders impinged upon valleybluffs, as part of an incised setting; (c) a low sinuosity, embanked channelwith low rates of downstream migration because of confinement by dikes,occurring in an inland delta with sandy sediments.

Local variation in meander migration rates was observed within reach B. Thiswas caused by the spatial variability of bank resistance as reflected by thewidth-depth ratio of the channel and the silt-clay ratios of deposits. Riverbanks are: 1) very erodible when consisting of channel deposits, aeoliandune deposits or when coarse fluvio-periglacial deposits occur at theirbase; 2) erodible when dominated by overbank deposits or aeolian sand sheetdeposits; 3) resistant when a plaggen-layer is exposed; and 4) veryresistant when dominated by floodbasin deposits.

These implications of meander variability enable to assess the effects ofthe rehabilitation of the meandering process.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2007

References

Andrews, E.D., 1980. Effective and bankfull discharges of streams in the Yampa River basin, Colorado and Wyoming. Journal of Hydrology 46: 311330.10.1016/0022-1694(80)90084-0Google Scholar
Berendsen, H.J.A., 1982. De genese van het landschap in het zuiden van de provincie Utrecht: een fysisch-geografische studie. Utrechtse Geografische Studies 25, Rijksuniversiteit Utrecht, Geografisch Instituut (Utrecht): 256 pp.Google Scholar
Brookes, A., 1987. Restoring the sinuosity of artificially straightened stream channels. Environmental Geology and Water Sciences 10: 3341.10.1007/BF02588003Google Scholar
Brookes, A. & Shields, F.D. Jr. (eds), 1996. River channel restoration: guiding principles for sustainable projects. John Wiley & Sons (Chichester): 433 pp.Google Scholar
Bull, W.B., 1991. Geomorphic responses to climatic change. Oxford University Press (New York): 326 pp.Google Scholar
Detering, U., 2000. Das Gewasserauenprogramm NRW am Beispiel der Oberen Lippe. In: Bundesamt für Naturschutz (eds): Renaturierung von Bächen, Flüssen und Strömen. Angewandte Landschaftsökologie 37: 153162.Google Scholar
Duursema, G., 2004. Leidraad voor herstel van de Overijsselse Vecht. Waterschap Velt en Vecht (Coevorden): 64 pp.Google Scholar
Ente, P., Haans, J.C.F.M. & Knìbbe, M., 1965. De bodem van Overijssel, de Noordoostpolder en Oostelijk Flevoland. Stichting voor Bodemkartering (Wageningen): 104 pp.Google Scholar
Fredsoe, J., 1978. Meandering and braiding of rivers. Journal of Fluid Mechanics 84: 609624.10.1017/S0022112078000373S0022112078000373Google Scholar
Glitz, D., 1983. Künstliche Gerinne: die Altarme von Morgen? Garten und Landschaft 83, 2: 109111.Google Scholar
Hansen, H.O., Boon, P.J., Madsen, B.L. & Iversen, T.M. (eds), 1998. River restoration: the physical dimension. Aquatic Conservation: Marine and Freshwater Ecosystems 8: 1264.10.1002/(SICI)1099-0755(199801/02)8:1<1::AID-AQC283>3.0.CO;2-Z3.0.CO;2-Z>Google Scholar
Hooke, J.M. & Redmond, C.E., 1989. Use of carthographic sources for analysing river channel change with examples from Britain. In: Petts, G.E., Möller, H. & Roux, R.L. (eds): Historical change of large alluvial rivers: western Europe. John Wiley & Sons (Chichester): 7993.Google Scholar
Howard, A.D., 1992. Modeling channel migration and floodplain sedimentation in meandering streams. In: Carling, P.A. & Petts, G.E. (eds): Lowland floodplain rivers: geomorphological perspectives. John Wiley & Sons (Chichester): 141.Google Scholar
Hudson, P. & Kesel, R., 2000. Channel migration and meander-bend curvature in the lower Mississippi River prior to major human modification. Geology 28: 531534.10.1130/0091-7613(2000)28<531:CMAMCI>2.0.CO;22.0.CO;2>Google Scholar
Huisink, M., 1998. Changing river styles in response to climate change: examples from the Maas and Vecht during the Weichselian Pleniglacial and Lateglacial. PhD Thesis, Vrije Universiteit, Faculty of Earth Sciences (Amsterdam): 127 pp.Google Scholar
Ikeda, H. 1989. Sedimentary controls on channel migration and origin of point bars in sand-bedded meandering rivers. In: Ikeda, S. & Parker, G. (eds): River meandering. Water Resources Monograph 12, American Geophysical Union (Washington, D. C): 5168.Google Scholar
Knighton, D., 1984. Fluvial forms and processes. Edward Arnold (London): 218 pp.Google Scholar
Kolb, C.R., 1963. Sediments forming the bed and banks of the lower Mississippi River and their effect on river migration. Sedimentology 2: 227234.10.1111/j.1365-3091.1963.tb01216.xGoogle Scholar
Kuijer, P.C. & Rosing, H., 1994. Bodemkaart van Nederland 1 : 50 000: toelichting bij kaartblad 21 Oost Zwolle. DLO-Staring Centrum (Wageningen): 175 pp.Google Scholar
Leopold, L.B. & Wolman, M.G., 1957. River channel patterns: braided, meandering and straight. Geological Survey, Professional Paper 282-B, United States Department of the Interior (Washington D.C): 42 pp.Google Scholar
Leopold, L.B., Wolman, M.G. & Miller, J.P., 1964. Fluvial processes in geomorphology. Freeman (San Francisco): 522 pp.Google Scholar
Maas, G., Corporaal, A., Kranendonk, R. & Wolfert, H., 2007. Ruimte voor kleine rivieren: Overijsselse Vecht op koers? Rapport 1512, Alterra (Wageningen): 36 pp.Google Scholar
Meinardi, C.R., Schotten, C.G.J. & De Vries, J.J., 1998. Grondwateraanvulling en oppervlakkige afstroming in Nederland: langjaarlijkse gemiddelden voor de zand- en leemgebieden. Stromingen 4: 2741.Google Scholar
Miall, A.D., 1985. Architectural-element analysis: a new method of facies analysis applied to fluvial deposits. Earth-Science Reviews 22: 261308.10.1016/0012-8252(85)90001-7Google Scholar
Middelkoop, H., 1997. Embanked fioodplains in the Netherlands: geomorphological evolution over various time scales. Netherlands Geographical Studies 224, Koninklijk Nederlands Aardrijkskundig Genootschap / Universiteit Utrecht, Faculteit Ruimtelijke Wetenschappen (Utrecht): 341 pp.Google Scholar
Ministerie, van Landbouw, Natuurbeheer, en Visserij, 1990. Natuurbeleidsplan: regeringsbeslissing. Sdu uitgeverij (Den Haag): 272 pp.Google Scholar
Nanson, G.C. & Croke, J.C., 1992. A genetic classification of fioodplains. Geomorphology 4: 459486.10.1016/0169-555X(92)90039-QGoogle Scholar
Page, K. & Nanson, G., 1982. Concave-bank benches and associated floodplain formation. Earth Surface Processes and Landforms 7: 529544.10.1002/esp.3290070603Google Scholar
Pape, J.C., 1970. Plaggen soils in the Netherlands. Geoderma 4: 229255.10.1016/0016-7061(70)90005-4Google Scholar
Parker, G., 1998. River meanders in a t ray. Nature 395: 111112.10.1038/25832Google Scholar
Provincie Overijssel, 1992. Beleidsplan natuur en landschap Overijssel 1992-1998. Provincie Overijssel (Zwolle): 88 pp.Google Scholar
Rasmussen, J.B., 1999. The Skjern River restoration project: Denmark’s largest nature restoration project. Danish Ministry of the Environment and Energy / National Forest and Nature Agency (Copenhagen): 32 pp.Google Scholar
Reineck, H.-E. & Singh, I.B., 1980. Depositional Sedimentary Environments: With Reference to Terrigeneous Clastics, second, revised and updated edition. Springer-Verlag (Berlin): 439 pp.Google Scholar
Richards, K.S., 1982. Rivers: form and process in alluvial channels. Methuen (London): 358 pp.Google Scholar
Rosgen, D.L., 1994. A classification of natural rivers. Catena 22: 169199.10.1016/0341-8162(94)90001-9Google Scholar
Schumm, S.A., 1968. River adjustment to altered hydrologie regimen: Murrumbidgee River and palaeochannels, Australia. US Geological Survey, Professional Paper 598 (Washington D.C.): 65 pp.Google Scholar
Schumm, S.A., 1977. The fluvial system. John Wiley & Sons (New York): 338 pp.Google Scholar
Staring, W. & Stieltjes, T.J., 1848. De Overijsselsche wateren, s.n. (Zwolle): 488 pp.Google Scholar
Staring Centrum, 1989. Bodemkaart van Nederland 1 : 50 000: toelichting bij de kaartbladen 22 West Coevorden en 22 Oost Coevorden. Staring Centrum (Wageningen): 171 pp.Google Scholar
Ten Cate, J.A.M., Van Holst, A.F., Kleijer, H. & Stolp, J. Handleiding bodem-geografisch onderzoek: richtlijnen en voorschriften. Deel A: Bodem. Technisch Document 19A, DLO-Staring Centrum (Wageningen): 222 pp.Google Scholar
Thorne, C.R., 1992. Bend scour and bank erosion on the meandering Red River, Louisiana. In: Carling, P.A. & Petts, G.E. (eds): Lowland fioodplain rivers: geomorphological perspectives. Wiley (Chichester): 95115.Google Scholar
Van de Kraats, J.A. (ed.), 1994. Rehabilitation of the River Rhine: proceedings of the International Conference on Rehabilitation of the River Rhine, 15-19 March 1993, Arnhem, the Netherlands. Water Science and Technology 29, 3: 1394.Google Scholar
Van den Berg, J.H., 1995. Prediction of alluvial channel pattern of perennial rivers. Geomorphology 12: 259279.10.1016/0169-555X(95)00014-VGoogle Scholar
Vivash, R., Ottosen, O., Janes, M. & Sørensen, H.V., 1998. Rehabilitation of the rivers Brede, Cole and Skerne: a joint Danish and British EU-LIFE demonstration project, II – The river rehabilitation works and other related practical aspects. Aquatic Conservation: Marine and Freshwater Ecosystems 8: 197208.10.1002/(SICI)1099-0755(199801/02)8:1<197::AID-AQC268>3.0.CO;2-T3.0.CO;2-T>Google Scholar
Werkgroep Vechtvisie, 1997. De Vechtvisie: stap voor stap naar een duurzame Vecht. Arcadis Heidemij Advies (Deventer): 113 pp.Google Scholar
Westerhoff, W.E., Wong, T.E. & De Mulder, E.F.J., 2003. Opbouw van de ondergrond. In: De Mulder, E.F.J., Geluk, M.C., Ritsema, I.L., Westerhof, W.E. & Wong, T.E.: De ondergrond van Nederland. Wolters-Noordhoff (Groningen): 247352.Google Scholar
Wolfert, H.P., 2001. Geomorphological Change and River Rehabilitation: Case Studies on Lowland Fluvial Systems in the Netherlands. PhD Thesis. Scientific Publications 6, Alterra Green World Research (Wageningen): 200 pp.Google Scholar
Wolfert, H.P., Maas, G.J. & Dirkx, G.H.P., 1996. Het meandergedrag van de Overijsselse Vecht: historische morfodynamiek en kansrijkdom voor natuurontwikkeling. Rapport 408, DLO-Staring Centrum (Wageningen): 98 pp.Google Scholar