Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-23T19:53:24.728Z Has data issue: false hasContentIssue false

Distribution and palaeoecology of scleractinian corals during the Maastrichtian (Late Cretaceous)

Published online by Cambridge University Press:  10 May 2024

Rosemarie C. Baron-Szabo
Affiliation:
Department of Invertebrate Zoology, Smithsonian Institution, Washington, DC, USA Research Institute Senckenberg, Frankfurt am Main, Germany
Jacob Leloux*
Affiliation:
Kroonstraat 14, Stramproy, the Netherlands
*
Corresponding author: Jacob Leloux; Email: [email protected]

Abstract

Maastrichtian scleractinian corals from 94 localities in 26 Maastrichtian regions world-wide with strata of that age are taxonomically and palaeobiogeographically evaluated. A total of 205 taxa, belonging to 116 genera and 37 families, are included in the present study. Most coral taxa have been recorded from non-reefal environments. A significant majority of these taxa (genera = 70.7%; species = 75.6%) appear to have been endemic during the Maastrichtian. The Maastrichtian coral fauna is dominated by solitary and cerioid-plocoid forms (both accounting for 41 genera = 70%), having mainly medium- and large-sized corallites. The most diverse coral assemblages are those that have been recorded from arid (Jamaica: 63 species, Mexico: 29 species), warm-temperate (the Netherlands-Belgium: 32 species) and tropical regions (Iran: 27 species). The occurrence of Cunnolites polymorphus (Goldfuss) is newly recorded for the Netherlands (southern Limburg). Compared to the microstructural composition of the coral fauna of the lowermost Cretaceous (Berriasian; 91% of the species and 83% of the genera belonged to previously established microstructural groups), in the Maastrichtian, corals belonging to previously established microstructural groups were of minor importance (genera = 26%; species = 29.3%). The majority of Maastrichtian scleractinian taxa (both solitary and colonial) from the type area of the Maastrichtian Stage in the southeast Netherlands and northeast Belgium are illustrated.

Type
Original Article
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of the Netherlands Journal of Geosciences Foundation

Introduction

Scleractinian corals of Maastrichtian age have been the focus of various studies since the late 18th century, including works on their taxonomy (e.g. Faujas-Saint-Fond, Reference Faujas-Saint-Fond1798–1803; Goldfuss, Reference Goldfuss1826–1844; Milne Edwards & Haime, Reference Milne Edwards and Haime1857; Nötling, Reference Nötling1897; Trauth, Reference Trauth1911; Dietrich, Reference Dietrich1917; Umbgrove, Reference Umbgrove1925; Wells, Reference Wells1933, Reference Wells1934; Alloiteau, Reference Alloiteau1936, Reference Alloiteau1952b, Reference Alloiteau1958; Kuzmicheva, Reference Kuzmicheva1985, Reference Kuzmicheva1987; Tchéchmédjiéva, Reference Tchéchmédjiéva1986, Reference Tchéchmédjiéva1995; Filkorn, Reference Filkorn1994; Leloux, Reference Leloux1999, Reference Leloux2004; Baron-Szabo, Reference Baron-Szabo2000, Reference Baron-Szabo2002, Reference Baron-Szabo2006, Reference Baron-Szabo2008; Filkorn et al., Reference Filkorn, Avendano-Gil, Coutiño-José and Vega-Vera2005; Jell et al., Reference Jell, Cook and Jell2011; Löser, Reference Löser2012; Baron-Szabo et al., Reference Baron-Szabo, Schlagintweit and Rashidi2023) as well as in analyses primarily dealing with Maastrichtian stratigraphy and sedimentology (e.g. Gill et al., Reference Gill, Cobban and Kier1966; Sohl & Koch, Reference Sohl and Koch1984; Görmüş et al., Reference Görmüş, Demircan, Kadioğlu, Yağmurlu and Us2019; Afghah, Reference Afghah2022). Frequently, corals have been documented from rudist-dominated limestones (e.g. Kühn, Reference Kühn1933; Özer, Reference Özer1992; Pons et al., Reference Pons, Gallemí, Höfling and Moussavian1994; Mitchell, Reference Mitchell2002; Schafhauser et al., Reference Schafhauser, Götz, Baron-Szabo and Stinnesbeck2003; Mitchell et al., Reference Mitchell, Stemann, Blissett, Brown, Ebanks, Gunter, Miller, D., Pearson, Wilson and Young2004; Khazaei et al., Reference Khazaei, Yazdi and Löser2009). In more recent decades, an increasing number of works have been aimed at assessments of extinction patterns amongst corals across the Cretaceous/Paleogene (K/Pg) boundary (Rosen & Turnšek, Reference Rosen and Turnšek1989; Kiessling & Baron-Szabo, Reference Kiessling and Baron-Szabo2004; Baron-Szabo, Reference Baron-Szabo2006, Reference Baron-Szabo2008).

The purpose of the present paper is to provide a comprehensive overview of Maastrichtian occurrences of scleractinian corals and evaluate their taxonomic assignment, palaeoecological occurrences and palaeogeographical distribution (Tables 15).

Table 1. List of Maastrichtian scleractinian coral genera and their family assignments; *previously (**potentially previously) established microstructural group

Table 2. Corallite size and types of corallite integration of the Maastrichtian scleractinian coral species; 186 taxa have been included in our evaluation (19 species were omitted due to a lack of sufficient data). Corallite sizes: small (s) = up to 2.5 mm; medium (m) = >2.5–9 mm; large (l) = >9 mm. For information on individual species, reference is made to Table 4

Table 3. List of localities with Maastrichtian strata from which the coral material has been collected. Co-ordinates and palaeo co-ordinates representative of distributional patterns are from Paleobiology Database (see paleobiodb.org, for more details on individual sites); palaeoclimate zones estimated based on paleomaps by Tennant et al. (Reference Tennant, Mannion, Upchurch, Sutton and Price2017) and the Paleomap project at www.scotese.com: (ar) = arid; (ct) = cool temperate; (pt) = para- to subtropical; (tr) = tropical; (wt) = warm temperate

Table 4. Alphabetical list of Maastrichtian scleractinian coral species, localities from which they were collected and remarks on their taxonomic position. Age of strata at collecting site: (*) = Maastrichtian (unspecified); (1) = lower Maastrichtian; (2) = mid-Maastrichtian; (3) = upper Maastrichtian (for more details on locations and recent taxonomic updates, see Paleobiology Database [paleobiodb.org]). For further information on localities, see also Table 3, and for excluded taxa herein, reference is made to Baron-Szabo (Reference Baron-Szabo2006, Reference Baron-Szabo2008) and updates herein. Types of corallite integration are as follows: cp = cerioid-plocoid; s = solitary (no integration); htm = hydno-thamnasterioid-meandroid; b = branching. Corallite sizes: small (s) = up to 2.5 mm; medium (m) = >2.5–9 mm; large (l) = >9 mm. * = might occur in more than one type of corallite integration or overlapping types of integration

Table 5. List of localities with Maastrichtian strata from which the coral material was collected, number of species (colonial/solitary), and palaeoenvironment recorded for each area (*palaeoecological data retrieved from original publications with updates provided by Paleobiology Database [paleobiodb.org]). For co-ordinates/palaeo co-ordinates of localities, see Table 3

Material and methods

Material included in the present study originates from beds having stratigraphical ranges clearly defined as Maastrichtian, only including works in which descriptions or illustrations of the coral material were provided. Works in which the stratigraphical ranges of the coral-bearing strata are not distinctly defined but given as, for example, Campanian–Maastrichtian (e.g. Felix, Reference Felix1906; Baron-Szabo, Reference Baron-Szabo2000; Gameil, Reference Gameil2005), or in which material was either only listed or insufficiently described (e.g. Böhm. Reference Böhm1891; Rengarten, Reference Rengarten1959) and identifications have not been confirmed in subsequent works, are excluded from the present study. Over 2,000 records, including around 500 nominal taxa, have been evaluated (Kiessling & Baron-Szabo, Reference Kiessling and Baron-Szabo2004; Leloux, Reference Leloux2004; Filkorn et al., Reference Filkorn, Avendano-Gil, Coutiño-José and Vega-Vera2005; Baron-Szabo, Reference Baron-Szabo2006, Reference Baron-Szabo2008; Khazaei et al., Reference Khazaei, Yazdi and Löser2009; Jell et al., Reference Jell, Cook and Jell2011; Löser, Reference Löser2012; Görmüş et al., Reference Görmüş, Demircan, Kadioğlu, Yağmurlu and Us2019; Baron-Szabo et al., Reference Baron-Szabo, Schlagintweit and Rashidi2023), inclusive of new information provided by Paleobiology Database (paleobiodb.org). Affinities of coral assemblages have been calculated using the Jaccard Index.

Abbreviations used in Table 4 are as follows: d = corallite diameter; d (series) = width of corallite series; cc = distance between corallite centres; h = height of corallum; s = number of septa; s/mm = septal density.

Material illustrated (Figs. 29) in the present paper includes specimens from the following institutions:

Figure 1. Palaeomap showing localities with Maastrichtian coral faunas included in the present study. 1 = Antarctica; 2 = Australia; 3–4 = Madagascar; 5 = India; 6 = Oman; 7 = UAE; 8 = Iran; 9 = Ukraine; 10 = Türkiye; 11 = Turkmenistan; 12–13 = Kazakhstan; 14 = Russia; 15 = Bulgaria; 16 = Türkiye; 17 = eastern Serbia; 18–19 = Ukraine; 20 = Poland; 21 = Denmark; 22 = the Netherlands-Belgium; 23 = Germany; 24 = Spain; 25 = Libya; 26 = Senegal; 27 = Greenland; 28–34 = USA; 35–36 = Mexico; 37 = Jamaica; 38 = Peru. Palaeomap modified from Paleomap project (Scotese, Reference Scotese2014; www.scotese.com). For palaeo co-ordinates, see Table 3.

Figure 2. Maastrichtian scleractinian corals from localities in the Netherlands-Belgium, Jamaica, Senegal and Madagascar (*denoting images derived from http://colhelper.mnhn.fr, by permission of Dr Sylvain Charbonnier, Muséum national d’Histoire naturelle, Paris, August 2020). (A) Actinastrea goldfussi (d’Orbigny, Reference Orbigny1850) (MB.K 3742), upper Maastrichtian, southern Limburg, the Netherlands; upper surface of colony, corallite view, contrast inverted, mouldic preservation (scale bar equals 22 mm). (B) *Dendrophyllia sp. (MNHN.F.R10840), Maastrichtian, Popenguine, Senegal; upper surface of colony, corallite view (scale bar equals 7 mm). (C) *Dendrophyllia sp. (MNHN.F.R10840), Maastrichtian, Popenguine, Senegal; upper surface of colony, close-up view of corallites (scale bar equals 3.5 mm). (D) Actinhelia elegans (Goldfuss, Reference Goldfuss1826) (MB.K 3688); upper Maastrichtian, southern Limburg, the Netherlands; upper surface of colony, mouldic preservation (scale bar equals 13.5 mm). (E) Cunnolites polymorphus (Goldfuss, Reference Goldfuss1826) (MB.K3103); upper Maastrichtian, southern Limburg, the Netherlands; close-up of Fig. 2F (scale bar equals 14 mm). (F) Cunnolites polymorphus (Goldfuss, Reference Goldfuss1826) (MB.K 3103); upper Maastrichtian, southern Limburg, the Netherlands; upper surface, corallite view, mouldic preservation (scale bar equals 35 mm). (G) Latomeandra boltonae (Wells, Reference Wells1934) (holotype, USNM I 74479), upper Maastrichtian, Catapudensis, Jamaica; upper surface of colony, corallite view (scale bar equals 11.5 mm). (H) Latomeandra boltonae (Wells, Reference Wells1934) (holotype, USNM I 74479), upper Maastrichtian, Catapudensis, Jamaica; upper surface of colony, lateral view (scale bar equals 45 mm). (I) *Balanophyllia caulifera (Conrad, Reference Conrad1848), holotype of Palaeopsammia mitsinjoensis (Alloiteau, Reference Alloiteau1958) (MNHN.F.J08195); Maastrichtian, Mitsinjo, Madagascar; corallite view of corallum, polished (scale bar equals 7.5 mm). (J, K) *Stephanosmilia madagascariensis (Alloiteau, Reference Alloiteau1958) (MNHN.F.M05336); Maastrichtian, Popenguine, Senegal; (J) upper surface of corallum, corallite view, (K) lateral view (scale bar equals 3 mm). (L, M) Actinacis reussi (Oppenheim, Reference Oppenheim1930) (USNM field number 363); Titanosarcolites Limestone, Maastrichtian, Jerusalem Mountain Inlier, Parish of Hanover; Jamaica; (L) corallite view of colony, thin section (scale bar equals 5 mm), (M). close-up of Fig. 1K (scale bar equals 2.5 mm). (N) Paracycloseris nariensis (Duncan, Reference Duncan1880) (USNM field number 557a); upper Maastrichtian, Rio Minho, Jamaica; corallite view of corallum, thin section (scale bar equals 4 mm).

Figure 3. Maastrichtian solitary corals from the Maastrichtian type area (the Netherlands-Belgium). (A, B) Caryophyllia konincki (Milne Edwards & Haime, Reference Milne Edwards and Haime1848a) (NHMM RH 204), upper Maastrichtian, Meerssen Member, Maastricht Formation, Eben Emael (Marnebel quarry complex), northeast Belgium (scale bar equals 2 mm). (C) Trochosmilia faujasi Milne Edwards & Haime, Reference Milne Edwards and Haime1848c (RGM.29137), upper Maastrichtian, Maastricht Formation, Meerssen Member inferred, Sint-Pietersberg area; mouldic preservation, lateral view (scale bar equals 10 mm). (D, E) Peplosmilia latona (Felix, Reference Felix1903) (RGM.29036, leg. J.H.F. Umbgrove); lectotype of Placosmilia robusta (Umbgrove, Reference Umbgrove1925), upper Maastrichtian, Maastricht Formation, Meerssen Member inferred, Sint-Pietersberg area; mouldic preservation (scale bar equals 10 mm). (F, G) Areopsammia alacca (Morren, Reference Morren1828) (RGM 841362, formerly RGM 212452, ex Leloux Collection, Jx. 903), upper Maastrichtian, Maastricht Formation, upper Nekum or lower Meerssen members, western side of former ENCI Quarry; mouldic preservation, lateral view (scale bar equals 10 mm). (H, I) Montlivaltia angusticostata (Umbgrove, Reference Umbgrove1925) (RGM.29142, leg. J.H.F. Umbgrove), upper Maastrichtian, Maastricht Formation, ‘Houthemerberg, Vilt’; mouldic preservation, basal and lateral view (scale bar equals 5 mm).

Figure 4. Maastrichtian solitary corals from the Maastrichtian type area (the Netherlands-Belgium). (A–C) Parasmilia centralis (Mantell, Reference Mantell1822) (RGM 841366, formerly RGM 212465, leg. Kit Liem Oen) upper lower Maastrichtian, Gulpen Formation, Vijlen Member, CBR-Lixhe quarry; lateral, top and basal view (scale bars equal 10 (A) and 2 mm (B, C)). (D) Diploctenium cordatum (Goldfuss, Reference Goldfuss1826) (RGM.212454.a), upper Maastrichtian, Maastricht Formation, top Nekum Member, western side of former ENCI Quarry; lateral view, mouldic preservation (scale bar equals 5 mm). (E) Diploctenium pluma (Goldfuss, Reference Goldfuss1826) (RGM.29135, STA.8167, leg. Thierens, 1857), upper Maastrichtian, Maastricht Formation, Meerssen Member inferred, Sint-Pietersberg area; lateral view, mouldic preservation (scale bar equals 2 mm). (F) Cunnolites cancellata (Goldfuss, Reference Goldfuss1826) (RGM 841354, formerly RGM 212454.b, ex Leloux Collection, Jx 1022), upper Maastrichtian, Maastricht Formation, top Nekum Member Member to base of Meerssen Member, Maastricht (former ENCI Quarry); top view, mouldic preservation (scale bar equals 10 mm). (G) Cunnolites cancellata (Goldfuss, Reference Goldfuss1826) (RGM.33844), upper Maastrichtian, Maastricht Formation, Sint-Pietersberg area; mouldic preservation (scale bar equals 10 mm).

Figure 5. Maastrichtian colonial scleractinians from localities in the type area of the Maastrichtian Stage (the Netherlands-Belgium). (A) Actinastrea goldfussi (d’Orbigny, Reference Orbigny1850) (RGM.841363, formerly RGM.212459, ex Leloux Collection, Jx.2120), upper Maastrichtian, Maastricht Formation, Meerssen Member (IVf -4/-5), Maastricht (former ENCI Quarry); mouldic preservation, corallites with predominantly 6-6 septal pattern (scale bar equals 2 mm). (B) Actinastrea goldfussi (d’Orbigny, Reference Orbigny1850) (RGM.29070), upper Maastrichtian, Maastricht Formation, Meerssen Member inferred, Sint-Pietersberg area; recrystallised skeletal preservation (scale bar equals 2 mm). (C) Actinastrea goldfussi forma faujasi (Milne Edwards & Haime, Reference Milne Edwards and Haime1857) (RGM.841360.a, formerly RGM.212458.a, ex Leloux Collection, Jx.2115), upper Maastrichtian, Maastricht Formation, Meerssen Member (IVf-4/-5), Maastricht (former ENCI quarry); corallites with predominantly 8-8 septal pattern, basal view, mouldic preservation (scale bar equals 2 mm). (D) Aplosastrea geminata (Goldfuss, Reference Goldfuss1826), lectotype (IPB GOLDFUSS 233a) designated by Löser (Reference Löser2011); Sint-Pietersberg area, Maastricht. Recrystallised skeletal or cast preservation (scale bar equals 5 mm). (E) Columactinastraea fallax (Umbgrove, Reference Umbgrove1925), lectotype (RGM.29074), Maastricht Formation, South Limburg; mouldic preservation (scale bar equals 2 mm). (F, G) Columnactinastrea anthonii (Leloux, Reference Leloux2003), holotype (RGM.216001, ex Leloux Collection), upper Maastrichtian, Maastricht Formation, Meerssen Member, basal IVf-4, former ENCI Quarry; mouldic preservation (scale bar equals 2 mm); recrystallised skeletal preservation (scale bar equals 2 mm). (H) ?Isastrea angulosa (Goldfuss, Reference Goldfuss1826) (THDN.2438, now at Naturalis, Leiden), upper Maastrichtian, Maastricht Formation, southern Limburg; mouldic preservation (scale bar equals 5 mm).

Figure 6. Maastrichtian colonial scleractinians from localities in the type area of the Maastrichtian Stage (the Netherlands-Belgium). (A) Montipora cretacea (Umbgrove, Reference Umbgrove1925), holotype (RGM.29072), upper Maastrichtian, Maastricht Formation, Meerssen Member inferred, Maastricht area, mouldic preservation (scale bar equals 2 mm). (B) Neocoenia (Placocaeniopsis) rotula (Goldfuss, Reference Goldfuss1826) (RGM.841361, formerly RGM.212455, ex Leloux Collection, Jx.1188), upper Maastrichtian, Maastricht Formation, Meerssen Member (IVf-3/-4), former ENCI Quarry; mouldic preservation, basal view (scale bar equals 5 mm). (C) Pleurocora arachnoides (Walch, Reference Walch1775) forma minor (Quenstedt, Reference Quenstedt1881) (RGM.72658, leg. J.H.F. Umbgrove), upper Maastrichtian, Maastricht Formation, Meerssen Member inferred, southern Limburg; mouldic preservation (scale bar equals 2 mm). (D) Pleurocora arachnoides (Walch, Reference Walch1775) (RGM.76612, leg. J.H.F. Umbgrove), upper Maastrichtian, Maastricht Formation, Meerssen Member inferred, southern Limburg ove; mouldic preservation (scale bar equals 2 mm). (E) Pleurocora arachnoides (Walch, Reference Walch1775) forma conica (Umbgrove), lectotype (RGM.29037), upper Maastrichtian, Maastricht Formation, Meerssen Member inferred, Maastricht area; mouldic preservation (scale bar equals 2 mm). (F) Heliastrea francqana H. (Milne Edwards & Haime, Reference Milne Edwards and Haime1857), grouped herein with Placocoenia macrophthalma (RGM.841352, formerly RGM.212451, ex Leloux Collection, Jx.2144), upper Maastrichtian, Maastricht Formation, Meerssen Member (IVf-4/-5), former ENCI Quarry; mouldic preservation (scale bar equals 10 mm). (G) Placocoenia macrophthalma (Goldfuss, Reference Goldfuss1826) (RGM 29044, probably Staring Collection no. 14198), southern Limburg; mouldic preservation (scale bar equals 10 mm). (H) Baryphyllia maxima (Umbgrove, Reference Umbgrove1925), holotype; RGM.29030, ‘Maastricht’; mouldic preservation (scale bar equals 10 mm).

Figure 7. Maastrichtian colonial scleractinians from localities in the type area of the Maastrichtian Stage (the Netherlands-Belgium). (A) Placocoenia macrophthalma (Goldfuss, Reference Goldfuss1826); NHMM K.552, Blom Quarry, Meerssen Member IVf-3 to IVf-5, Maastricht Formation, upper Maastrichtian; mouldic preservation (scale bar equals 2 mm). (B) Ellipsocoenia conferta (Umbgrove, Reference Umbgrove1925), holotype; RGM.29039, ‘Maastricht’, Maastricht Formation; mouldic preservation (scale bar equals 2 mm). (C) Ellipsocoenia conferta (Umbgrove, Reference Umbgrove1925), formerly Favia maastrichtensis (Umbgrove, Reference Umbgrove1925); Collection Landbouwhogeschool Wageningen no. 1227, now at Naturalis, Leiden; Keerderberg, southern Limburg; mouldic preservation (scale bar equals 5 mm). (D, E) Favia planissima (Umbgrove, Reference Umbgrove1925), holotype, subjective junior synonym of Dictuophyllia reticulata (Goldfuss, Reference Goldfuss1826) (RGM.20940), upper Maastrichtian, Maastricht Formation, Meerssen Member inferred, Sint-Pietersberg area; mouldic preservation (scale bar equals 10 mm) and detail (E, scale bar equals 2 mm). (F, G) Meandrophyllia velamentosa (Goldfuss, Reference Goldfuss1826), formerly Meandrophyllia gyrosa (Goldfuss, 1825) (RGM.29063), upper Maastrichtian, Maastricht Formation, Meerssen Member inferred, Sint-Pietersberg area; mouldic preservation; overview and detail, respectively (scale bars equals 5 and 2 mm, respectively).

Figure 8. Maastrichtian colonial scleractinians from localities in the type area of the Maastrichtian Stage (the Netherlands-Belgium). (A) Aspidastraea clathrata (Goldfuss, Reference Goldfuss1826) (RGM.29101), upper Maastrichtian, Maastricht Formation, southern Limburg; mouldic preservation (scale bar equals 10 mm). (B) Dimorphastrea solida (Umbgrove, Reference Umbgrove1925) (RGM.841365, formerly RGM.212457, ex Leloux Collection, Jx. 1646), upper Maastrichtian, Meerssen Member (IVf-4/-5) former ENCI Quarry; mouldic preservation (scale bar equals 5 mm). (C, D) Synastrea geometrica (Goldfuss, Reference Goldfuss1826) (RGM.14054), upper Maastrichtian, Maastricht Formation, Meerssen Member inferred, Sint-Pietersberg area; mouldic preservation, overview and detail, respectively (scale bar equals 10 and 2 mm, respectively). (E, F) Morphastrea escharoides (Goldfuss, Reference Goldfuss1826) (RGM.33826), upper Maastrichtian, Maastricht Formation, Meerssen Member inferred, Sint-Pietersberg area; mouldic preservation (scale bar equals 10 and 2 mm, respectively). (G, H) Fungiastraea flexuosa (Goldfuss, Reference Goldfuss1826) (RGM.76625, leg. J.H.F Umbgrove, December 8, 1918), upper Maastrichtian, Maastricht Formation, Meerssen Member inferred, Sint-Pietersberg area (Lichtenberg); mouldic preservation (scale bar equals 2 and 10 mm, respectively). (I, J) Meandrophyllia velamentosa (Goldfuss, Reference Goldfuss1826) (RGM.29050), upper Maastrichtian, Maastricht Formation, Meerssen Member inferred, Sint-Pietersberg area; mouldic preservation (scale bar equals 10 and 2 mm, respectively).

Figure 9. Maastrichtian colonial scleractinians from localities in the type area of the Maastrichtian Stage (the Netherlands-Belgium). (A) Heterocoenia grandis (Reuss, Reference Reuss1854) (RGM.841350, formerly RGM.212448), upper Maastrichtian, Maastricht Formation, Meerssen Member, former ENCI Quarry, Meerssen Member, Maastricht Formation, upper Maastrichtian; mouldic preservation (scale bar equals 10 mm). (B) Heterocoenia gracilis (Quenstedt, Reference Quenstedt1881) (RGM.841358, formerly RGM.212453, ex Leloux Collection, Jx.1122), upper Maastrichtian, Maastricht Formation, Meerssen Member (IVf-4\-5), former ENCI Quarry; mouldic preservation (scale bar equals 10 mm). (C, D) Heterocoenia grandis (Reuss, Reference Reuss1854) (RGM.841364, formerly RGM.212450), upper Maastrichtian, Maastricht Formation, Meerssen Member (IVf-4), former ENCI Quarry; mouldic preservation, lateral view (scale bar equals 5 mm) and basal view (scale bar equals 2 mm). (E) Heterocoenia gracilis (Quenstedt, Reference Quenstedt1881) (RGM 841351, formerly RGM.212456), upper Maastrichtian, Maastricht Formation, Meerssen Member (IVf-3/-4), former ENCI Quarry; mouldic preservation (scale bar equals 10 mm). (F) Heterocoenia grandis (Reuss, Reference Reuss1854) with bioerosional trace fossil (NHMM K 548), upper Maastrichtian, Maastricht Formation, Meerssen Member, southern Limburg; basal view, mouldic preservation (scale bar equals 5 mm). (G) Heterocoenia? sp. (sensu Goldfuss, Reference Goldfuss1826), cf. ‘Bacillastraea’ sensu Umbgrove (Reference Umbgrove1925, pl. 11, Fig. 22) (NHMM JJ 11287), upper Maastrichtian, Maastricht Formation, Meerssen Member (IVf-4), former ENCI Quarry; lateral and basal view of ‘corallite’, mouldic preservation (scale bar equals 10 mm).

MB, Museum für Naturkunde der Humboldt Universität, Berlin, Germany;

MNHN, Muséum National d‘Histoire Naturelle, Paris, France;

NHMM, Natuurhistorisch Museum Maastricht, the Netherlands;

RGM, Naturalis Biodiversity Center, Leiden, the Netherlands;

USNM, United States National Museum of Natural History, Smithsonian Institution, Washington DC, USA (now NMNH).

The taxonomic framework used here follows a synthesis of the modern studies (for a discussion, see Baron-Szabo, Reference Baron-Szabo2021b) with the classic works by Milne Edwards & Haime (Reference Milne Edwards and Haime1857), de Fromentel (Reference Fromentel1861, Reference Fromentel and d’Orbigny1877), Duncan (Reference Duncan1884), Koby (Reference Koby1887), Ogilvie (Reference Ogilvie1897), Oppenheim (Reference Oppenheim1930), Vaughan & Wells (Reference Vaughan and Wells1943), Alloiteau (Reference Alloiteau and Piveteau1952a, Reference Alloiteau1958) and Wells (Reference Wells and Moore1956) and recent updates (Baron-Szabo, Reference Baron-Szabo2021a, b and present study). For information on excluded taxonomic models, reference is made to Baron-Szabo (Reference Baron-Szabo2021a, pp. 29, 30, 166; Reference Baron-Szabo2021b, pp. 391, 392).

Analyses and results

Overview of localities with coral-bearing Maastrichtian strata

Africa: Libya, Madagascar, Senegal

Maastrichtian coral faunas from Africa are rather rare and distinctly dominated by solitary forms (80.7%) (see Table 5), as recorded in older studies carried out on corals from Libya by Rossi Ronchetti (Reference Rossi Ronchetti1955), and coral assemblages found in West African and sub-Saharan areas by Alloiteau (Reference Alloiteau1952b [Senegal]; Reference Alloiteau1936, Reference Alloiteau and Collignon1951, Reference Alloiteau1958 [Madagascar]) (Table 4). Unfortunately, little information on the lithology of the coral-bearing rocks was provided in these works, and no bioconstructions formed by the corals were reported. In recent papers, coral faunas have been re-evaluated and thoroughly revised (Kiessling & Baron-Szabo, Reference Kiessling and Baron-Szabo2004; Baron-Szabo, Reference Baron-Szabo2006, Reference Baron-Szabo2008; and present study).

Americas: Greenland, Jamaica, Mexico, Peru, USA

Studies on the K/Pg sections in the Nûgssuaq area of Greenland are few (Floris, Reference Floris1972). As far as Maastrichtian coral occurrences are concerned, only two solitary taxa from coastal environments have previously been recorded.

The rich coral fauna of Jamaica, occurring mainly in coral-rudist associations, has long attracted the attention of palaeontologists who focused on Late Cretaceous and K/Pg boundary assemblages. Collecting efforts by Coates, Kauffman and Jackson between 1966 and 1972 (collections of the Smithsonian Institution, Washington, DC) have provided insights into the most extensive Maastrichtian coral fauna known (Baron-Szabo, Reference Baron-Szabo2002, Reference Baron-Szabo2006, Reference Baron-Szabo2008). The corals inhabited a mixed volcaniclastic-carbonate platform (Mitchell, Reference Mitchell2002; Mitchell et al., Reference Mitchell, Stemann, Blissett, Brown, Ebanks, Gunter, Miller, D., Pearson, Wilson and Young2004) at shallow subtidal depths. They are distinctly dominated by zooxanthellate forms (Tables 4 and 5).

Maastrichtian corals from Mexico have been described from both northern (Myers, Reference Myers1968; Schafhauser et al., Reference Schafhauser, Götz, Baron-Szabo and Stinnesbeck2003; Baron-Szabo et al., Reference Baron-Szabo, Schafhauser, Götz and Stinnesbeck2006) and southern areas (Filkorn et al., Reference Filkorn, Avendano-Gil, Coutiño-José and Vega-Vera2005; Löser, Reference Löser2012), from both reefal environments (Schafhauser et al., Reference Schafhauser, Götz, Baron-Szabo and Stinnesbeck2003) and non-reefal mixed clastic/carbonate sequences (Baron-Szabo et al., Reference Baron-Szabo, Schafhauser, Götz and Stinnesbeck2006). The Mexican assemblages consist nearly exclusively of colonial forms and are characterised by a moderate to high species richness.

Very little is known about the coral facies of Peru. Wells (Reference Wells1941) noted one colonial coral species from lithologically unspecified sedimentary rocks. In contrast, coral occurrences have been reported from numerous localities across the USA (Table 3). However, these are rather monospecific, consisting almost exclusively of solitary forms such as Micrabacia and Trochocyathus (Stephenson, Reference Stephenson1916; Vaughan, Reference Vaughan1920; Wells, Reference Wells1933; Gill et al., Reference Gill, Cobban and Kier1966; Sohl & Koch, Reference Sohl and Koch1984; Bryan & Jones, Reference Bryan and Jones1989) (Tables 4, 5). The sole colonial forms known from the Maastrichtian of North America belong to Astrangia and Hindeastraea (Table 4).

Antarctica: James Ross Basin (Seymour Island, Snow Hill Island)

A rather small coral occurrence has been described from James Ross Basin (Filkorn, Reference Filkorn1994; Videira-Santos et al., Reference Videira-Santos, Tobin and Scheffer2022), comprising nearly exclusively solitary forms with medium- to large-sized corallites. The sole colonial species is the subplocoid-subbranching Pleurocora haueri. These corals have been recovered from both the inner shelf and estuarian or bay environments (Tables 35).

Asia: India, Iran, Kazakhstan, Oman, Russia, Türkiye, Turkmenistan and United Arab Emirates

Maastrichtian corals from India are known from old reports based on stratigraphical data that are difficult to reassign to or fit in with modern chronostratigraphy. In the present study, only the material described by Forbes (Reference Forbes1846) and Stoliczka (Reference Stoliczka1873) is included and compared to data presented by Sundaram et al. (Reference Sundaram, Henderson, Ayyasami and Stilwell2001). No bioconstructions have been reported from this area. Corals described are solitary forms, belonging exclusively to the large-polyp group (Tables 4, 5).

Maastrichtian corals from Iran were first assessed taxonomically on the basis of material from the coral-rudist limestone of the Neyriz area by Kühn (Reference Kühn1933). Recently, new material from various localities across Iran has been recorded (Khazaei et al., Reference Khazaei, Yazdi and Löser2009; Baron-Szabo et al., Reference Baron-Szabo, Schlagintweit and Rashidi2023), thus significantly increasing the number of coral species to the level of moderate to high species richness. The corals originate from sedimentary rocks assigned to the upper Maastrichtian Tarbur Formation, interpreted to have formed under shallow subtidal conditions.

A small number of predominantly solitary corals were described from various countries of the former Soviet Union (Kazakhstan, Russia and Turkmenistan) by Kuzmicheva (Reference Kuzmicheva1985, Reference Kuzmicheva1987). The sole (branching-) colonial species (Ogilviastraea bigemmis) was reported from Kazakhstan. Solitary forms comprise caryophylliids, parasmiliids and smilotrochids. All of the corals have large-sized corallites. In most cases, information on the lithology of the coral-bearing sedimentary rocks was not supplied (Tables 35).

Coral-bearing sedimentary rocks of the latest Cretaceous age in the Arabian Peninsula were described from several sections in Oman and the United Arab Emirates (Metwally, Reference Metwally1996; Baron-Szabo, Reference Baron-Szabo2000). Stratigraphically, most of these strata are assigned to the time period upper Campanian–lower Maastrichtian interval. Only nine taxa, nearly all of which are colonial, were collected from rocks dated as Maastrichtian. The single solitary form from this region belongs to Cunnolites, while colonial taxa comprise cerioid-plocoid and (hydno-) thamnasterioid-meandroid species (Tables 4, 5).

Very little is known about the Maastrichtian coral facies of Türkiye. From the southeastern part of the country, at Gevaş-Van, Özer (Reference Özer1992) figured material that is here assigned to the colonial form Aspidastraea orientalis. Recently, Görmüş et al. (Reference Görmüş, Demircan, Kadioğlu, Yağmurlu and Us2019) have mentioned an abundant occurrence of Cunnolites sp. from the Ankara area in the northwest. Reefal developments were reported from the Gevaş-Van locality in southeastern Türkiye, and shallow-subtidal conditions were described from the western part of the country (Tables 35).

Australasia: Australia

In a recent review of Cretaceous corals, Jell et al. (Reference Jell, Cook and Jell2011) described the first scleractinian coral fauna from deep subtidal sedimentary rocks in Western Australia, the assemblage consisting of 12 taxa is distinctly dominated by solitary species having conical growth forms. The sole colonial taxon is the cerio-plocoid Astrangia. The solitary species belong to a fairly large number of families: Caryophylliidae, Dendrophylliidae, Flabellidae, Fungiacyathidae, Parasmiliidae, Smilotrochidae and Turbinoliidae (Tables 1, 35).

Europe: Bulgaria, Denmark, Germany, the Netherlands-Belgium, Poland, eastern Serbia, Spain and Ukraine

The diversity of Maastrichtian coral occurrences across Europe varies significantly. With the exception of the coral assemblage described from the southern Netherlands and northeast Belgium (Leloux, Reference Leloux1999, Reference Leloux2004; Figs. 29 herein), European coral faunas consist of nine species or less (Table 5). The Dutch-Belgian coral fauna from the Liège-Limburg area (i.e. the type area of the Maastrichtian Stage) represents the second most diverse coral occurrence known from the Maastrichtian. It is composed mainly of colonial taxa, having all types of corallite integration (Tables 4, 5). Reefal developments were reported from coral-bearing sedimentary rocks of Bulgaria and Spain.

General attributes of scleractinian corals from the Maastrichtian

A total of 205 taxa, belonging to 116 genera and 37 families, are recognised from 94 localities in 26 regions with Maastrichtian strata world-wide (i.e. 170 species identified, 35 taxa kept in open nomenclature). Most of the taxa belong to solitary (41 genera = 35%; 83 species = 40.5%) and cerioid-plocoid forms (41 genera =%; 64 species = 31.2%) followed by corals having various kinds of (hydno-) thamnasterioid-meandroid integration (25 genera = 22%; 42 species = 20.5%) and branching types (9 genera = 8%; 16 species = 7.8%) (Tables 2, 4).

With regard to corallite size, 186 taxa are included in the present evaluation (19 species were omitted due to a lack of sufficient data) (Table 4). In Maastrichtian corals, corallite diameters range from less than 1 mm (e.g. Actinacis martiniana, Heterocoenia gracilis [see Fig. 9B], Stylophora garumnica) up to around 100 mm (e.g. species of Cunnolites such as C. rugosus) (Table 4) and fall into three major corallite-size groups: small (up to 2.5 mm), medium (>2.5–9 mm) and large (>9 mm). However, Maastrichtian scleractinians are nearly equally dominated by forms with medium-size (80 species = 43%) and large-size corallites (71 species = 38.2%), followed by small-corallite forms (35 species = 18.8%).

Based on the model of evolution of scleractinian corals using microstructural data (Roniewicz & Morycowa, Reference Roniewicz and Morycowa1993), Maastrichtian coral faunas show a distinct predominance of taxa belonging to modern microstructural groups (86 genera = 74%; 145 species = 70.7%) (Tables 1, 4). In comparison with the situation of both the lowermost Cretaceous (Berriasian), which showed that 91% of species and 83% of genera belonged to previously established microstructural groups (Baron-Szabo, Reference Baron-Szabo2018), and to the uppermost Lower Cretaceous (Albian), which ended with modern microstructural groups having become dominant (genera = 51.7%; species = 50.1%; see Baron-Szabo, Reference Baron-Szabo2021a, Reference Baron-Szabo2021b), previously established microstructural groups were of minor importance during the latest Cretaceous.

The most extensive records of Maastrichtian corals are from warm-temperate (53 out of 94 localities = 56.4%) and arid areas (20 out of 94 localities = 21.3%), including the USA, Australia and various European and Asian countries (Table 3). The most diverse coral assemblages have been reported from arid (Jamaica, Mexico), warm-temperate (the Netherlands-Belgium) and tropical regions (Iran) (Tables 35). As far as genus-level distribution is concerned, 34 genera (out of 116 genera = 29.3%) have been recorded from two or more localities (Table 4). The most widely distributed of these genera during the Maastrichtian belong to various solitary and colonial taxa, including Actinacis, Actinastrea, Actinhelia, Aspidastraea, Caryophyllia, Cunnolites, Dendrophyllia, Desmophyllum, Goniopora, Neocoenia, Palaeopsammia, Paracycloseris, Parasmilia, Smilotrochus, Stylophora, Synastrea and Trochocyathus (Figs. 29; Table 4). With regard to species distribution, a clear majority of taxa (155 taxa = 75.6%) has been recorded from only one geographic region during the Maastrichtian (Table 4).

In general, Maastrichtian coral diversity is very low with many occurrences consisting of 10 or fewer taxa (Table 5). The four most diverse coral assemblages recorded for this time slice are those from Jamaica (51 genera, 63 species), the Netherlands-Belgium (28 genera, 32 species), Mexico (24 genera, 29 species) and Iran (20 genera, 27 species) (Tables 4, 5). Comparing the species of the most diverse faunas, the coral assemblages from Jamaica and Mexico show the greatest correspondence (17.4%), followed by Mexico and the Netherlands-Belgium (4.9%) and Jamaica and Iran (3.3%).

Discussion and conclusions

Material derived from coral-bearing Maastrichtian sedimentary rocks from 94 localities in 26 regions world-wide has been considered in the present study (Fig. 1, Table 3). A total of 205 taxa in 116 genera, belonging to 37 families, are recorded (170 taxa assigned to species, 35 taxa are kept in open nomenclature) (Tables 1, 4, 5). In general, the corals inhabited various non-reefal settings, including coastal, deltaic, lagoonal and shallow to deep subtidal palaeoenvironments. Only from Bulgaria, Mexico, Oman, Spain and western Türkiye have corals been recorded from various types of reefal bioconstructions (Table 5). The most extensive records of Maastrichtian corals are from warm-temperate settings (53 out of 94 localities = 56.4%) followed by arid areas (20 out of 94 localities = 21.3%), including the USA, Australia and various European and Asian countries (Table 3).

Corals occurring in reefal developments have been recorded mainly from para- to subtropical (Bulgaria, Spain, western Türkiye) palaeoenvironments, followed by arid (Mexico) and tropical (Oman) areas. The most diverse corals faunas, however, are those from non-reefal sedimentary rocks of arid (Jamaica) and warm-temperate (the Netherlands-Belgium) regions (Tables 3, 5).

The most dominant group of coral taxa comprises forms that have no or very low corallite integration (48.3%: 83 solitary species = 40.5%; 16 branching forms = 7.8%), followed by those with cerioid-plocoid (64 species = 31.2%) and various kinds of (hydno-) thamnasterioid-meandroid integration (42 species = 20.5%) (Table 3).

As far as corallite size is concerned, 186 taxa have been included in the present evaluation (19 species were omitted due to a lack of sufficient information). In Maastrichtian coral assemblages, species with medium- and large-sized corallites predominate: 80 species (43%) belong to the medium-sized group, 71 species (38.2%) have large-sized corallites, and 35 species (18.8%) show smallcorallite diameters (Table 3). Nearly a third of the Maastrichtian corals are large-polyp solitary forms (55 species = 29.6%), while most of the cerioid-plocoid species have either medium- (31 taxa = 16.7%) or small-sized (26 taxa = 14%) corallites (Table 2). As a trend, it may be stated that the degree of corallite integration correlates to the size of the corallites. The least integrated forms have the largest corallite diameters: 59 species (out of 71 species) of the large-sized corallite group (83%) belong to solitary or branching types; 31 species (out of 35 species = 88.6%) of the small-sized corallite group have medium- (cerioid-plocoid) to highly integrated ([hydno-] thamnasterioid-meandroid) corallites.

A clear majority of the species (152 taxa = 74.2%) has been recorded from a single region only. The taxa were thoroughly revised applying the exact same taxonomic model to all forms. Possible reasons for this feature of apparent endemism might include, for instance, ecological/environmental issues and/or the fact that sampling efforts were not the same at each site. In some areas (the Netherlands-Belgium, Jamaica, etc.), Maastrichtian coral research has a long history (over two centuries), whereas in other regions (e.g. Türkiye, India, Peru and Russia), coral research has been limited in scope and extent to nearly non-existent.

Only 23 species (11.2%) that have been found in more than one locality are cosmopolitan to subcosmopolitan during the Maastrichtian, most of which are solitary (16 species): Bathycyathus lloydi, Caryophyllia konincki [(see Fig. 3A, B), Cunnolites cancellata (see Fig. 4F, G), Cunnolites giganteus, Cunnolites polymorphus (see Fig. 2E, F), Deltocyathus cupuliformis, Desmophyllum excavatum, ?Flabellosmilia vaughani, Micrabacia radiata, Palaeopsammia zitteli, Paracycloseris nariensis, Parasmilia elongata, Smilotrochus milneri, Smilotrochus ponderosus, Trochocyathus mitratus and Trochocyathus speciosus. Seven cosmopolitan to subcosmopolitan species belong to colonial forms: Actinhelia elegans (see Fig. 2D), Columactinastraea fallax (see Fig. 4E), Fungiastraea flexuosa (see Fig. 8G, H), Goniopora imperatoris, Neocoenia (Placocaeniopsis) rotula (see Fig. 6B), Ogilviastraea bigemmis and Stylophora octophylla (Table 4).

With regard to both genus and species levels, a significant majority of the taxa (82 genera out 116 = 70.7%; 155 taxa out of 205 = 75.6%) appears to be endemic during the Maastrichtian, having been reported from a single locality only (Table 4). The four most diverse coral assemblages recorded for the Maastrichtian are those from Jamaica (63 species), the Netherlands-Belgium (32 species), Mexico (29 species) and Iran (27 species). A comparison of the species of the most diverse faunas reveals that the assemblages from Jamaica and Mexico show the greatest correspondence (17.4%).

Coral faunas of the Maastrichtian show a distinct predominance of those taxa that represent modern microstructural groups (86 genera = 74%; 145 species = 70.7%) (Tables 1, 4).

Acknowledgements

Our thanks and gratitude go to Dennis Opresko (Knoxville, TN) for his valuable suggestions on an earlier version of the typescript and together with both Steve Cairns (Smithsonian Institution, Washington, DC, USA) and Bernard Lathuilière (Nancy, France), for many discussions on coral taxonomy.

Type specimens and additional study material were made accessible to us by Natasja den Ouden (Naturalis Biodiversity Center, Leiden, the Netherlands); Andreas Kroh, Alexander Lukeneder, Oleg Mandic and Thomas Nichterl (all Naturhistorisches Museum, Vienna, Austria); Hans Egger (Geologische Bundesanstalt, Wien; GBA, Vienna, Austria); Sylvain Charbonnier and Christine Perrin (both Muséum national d‘Histoire naturelle, Paris, France); Winfried Werner and Martin Nose (both Bayerische Staatssammlung, Munich, Germany); Jill Darrell (the Natural History Museum, London, UK); Dieter Korn (Museum für Naturkunde, Berlin, Germany) and John W.M. Jagt (Natuurhistorisch Museum Maastricht). As a Research Associate of the Smithsonian Institution (SI), Washington, DC (USA), and an Honorary Researcher at the Research Institute Senckenberg, Frankfurt am Main (Germany), the senior author wishes to express her deep appreciation for the continuing support from these institutions. The junior author is honoured to have been asked to co-operate in and contribute to this paper. Finally, we appreciate comments made by Bodil Lauridsen, by guest editor John W.M. Jagt and by an anonymous reviewer.

Footnotes

In: Jagt, John W.M., Fraaije, René H.B., Jagt-Yazykova, Elena A. & Vellekoop, Johan (eds). Aspects of Maastrichtian (Late Cretaceous) stratigraphy and palaeontology.

References

Afghah, M., 2022. Microfacies and depositional environment of Tarbur Formation (Upper Cretaceous-Lower Palaeocene), Zagros area, southwestern Iran. Geological Journal 2022(7): 116. DOI: 10.1002/gj.4450.Google Scholar
Alloiteau, J., 1936. Polypiers fossiles de Madagascar, 1: Formes du Crétacé de la province d‘Ananalava. Annales géologiques du Service des Mines de Madagascar 6: 4153.Google Scholar
Alloiteau, J., 1951. Coralliaires, Le Crétacé supérieur d‘Antonibe. In: Collignon, M. (ed): Annales géologiques du Service des Mines de Madagascar. vol. 19, p. 8083, 174, pl. 13.Google Scholar
Alloiteau, J., 1952a. Embranchment des Coelentérés. II. Madréporaires post –paléozoïques. In: Piveteau, J. (ed): Traité de Paléontologie 1. Masson (Paris): 539684. http://sdrv.ms/RBacJ8 Google Scholar
Alloiteau, J., 1952b. Note sur des polypiers du Senegal. Bulletin de la Direction des Mines 14: 918.Google Scholar
Alloiteau, J., 1954. Le genre Actinastrea d’Orb. 1849 dans le Crétacé supérieur français. In: Annales Hébert et Haug, Travaux du Laboratoire de Géologie de la Faculté des Sciences de l’Université de Paris. vol. 8, p. 9104, pls 1– 10.Google Scholar
Alloiteau, J., 1958. Monographie des madréporaires fossiles de Madagascar. Annales géologiques de Madagascar 25: 1218.Google Scholar
Alloiteau, J. & Tissier, J., 1958. Les Madréporaires du Montien des Petites Pyrénées (Comparaison avec ceux du Montien de Mons). Bulletin de la Societe d’Histoire Naturelle de Toulouse 93: 241291.Google Scholar
Álvarez-Pérez, G., 1997. New Eocene coral species from Igualada (Barcelona, NE of Spain). Boletín de la Real Sociedad española de Historia natural. Sección Geológica 91: 297304.Google Scholar
Baron-Szabo, R.C., 2000. Late Campanian-Maastrichtian corals from the United Arab Emirates-Oman border region. Bulletin of the Natural History Museum, London (Geology) 56(2): 91131.Google Scholar
Baron-Szabo, R.C. Scleractinian corals of the Cretaceous. A compilation of Cretaceous forms with descriptions, illustrations and remarks on their taxonomic position, 2002. 539 pp., 142 pls. Knoxville, Baron–Szabo [privately published].Google Scholar
Baron-Szabo, R.C., 2003. Taxonomie und Ontogenie von scleractinen Korallen der ostalpinen Oberkreide (Hochmoos- und Grabenbachschichten, Gosau-Gruppe, Santon). Jahrbuch der Geologischen Bundesanstalt 143(20): 107201, http://www.landesmuseum.at/datenbanken/digilit/?litnr=34374 Google Scholar
Baron-Szabo, R.C., 2006. Corals of the K/T-boundary. Part 1, Scleractinian corals of the Suborders Astrocoeniina, Faviina, Rhipidogyrina, and Amphiastraeina. Journal of Systematic Palaeontology 4(1): 1108. DOI: 10.1017/S1477201905001689.CrossRefGoogle Scholar
Baron-Szabo, R.C., 2008. Corals of the KT-boundary: scleractinian corals of the suborders Dendrophylliina, Caryophylliina, Fungiina, Microsolenina, and Stylinina. Zootaxa 1952(1): 1244. DOI: 10.11646/zootaxa.1952.1.1.CrossRefGoogle Scholar
Baron-Szabo, R.C., 2014, Scleractinian corals from the Cretaceous of the Alps and Northern Dinarides with remarks on related taxa. Abhandlungen der Geologischen Bundesanstalt 68: 1287, pls 1-88.Google Scholar
Baron-Szabo, R.C., 2018. Scleractinian corals from the upper Berriasian of central Europe and comparison with contemporaneous coral assemblages. Zootaxa 4383(1): 198. DOI: 10.11646/zootaxa.4383.1.1.CrossRefGoogle ScholarPubMed
Baron-Szabo, R.C., 2021a. Upper Barremian-lower Aptian scleractinian corals of central Europe (Schrattenkalk Fm., Helvetic Zone, Austria, Germany, Switzerland). Zootaxa 4960(1): 1199. DOI: 10.11646/zootaxa.4960.1.1.CrossRefGoogle Scholar
Baron-Szabo, R.C., 2021b. Scleractinian corals of the Albian (uppermost Lower Cretaceous) – overview, revision, evaluation. Proceedings of the Biological Society of Washington 134(1): 363406. DOI: 10.2988/0006-324X-134.1.363 (appendix, 74 pp.).CrossRefGoogle Scholar
Baron-Szabo, R.C. & Cairns, S.D., 2019. Systematic descriptions of the Scleractinia family Dendrophylliidae. Treatise Online 119: 132. DOI: 10.17161/to.v0i0.9825.Google Scholar
Baron-Szabo, R.C., Schafhauser, A., Götz, S. & Stinnesbeck, W., 2006. Scleractinian corals from the Cardenas Formation (Maastrichtian), San Luis Potosí, Mexico. Journal of Paleontology 80(6): 10331046. DOI: 10.1666/0022-3360(2006)80[1033:.CrossRefGoogle Scholar
Baron-Szabo, R.C., Schlagintweit, F. & Rashidi, K., 2023. Coral fauna across the Cretaceous-Paleogene boundary at Zagros and Sistan Suture zones and Yazd Block of Iran. Swiss Journal of Palaeontology 142(1): 7. DOI: 10.1186/s13358-023-00264-8.CrossRefGoogle Scholar
Bernecker, M. & Weidlich, O., 2005. Azooxanthellate corals in the Late Maastrichtian-Early Paleocene of the Danish basin: bryozoan and coral mounds in a boral shelf setting. In: Freiwald, A. & Roberts, J.M. (eds):, Cold-water corals and ecosystems.Springer (Berlin/Heidelberg): 325. DOI: 10.1007/3-540-27673-4_1.CrossRefGoogle Scholar
Böhm, J., 1891. Die Kreidebildungen des Fürbergs und Sulzbergs bei Siegsdorf in Oberbayern. Palaeontographica 38: 1106.Google Scholar
Bölsche, W., 1866. Die Korallen des norddeutschen Jura- und Kreidegebirges. Zeitschrift der deutschen geologischen Gesellschaft 18: 439486, pls 7–9.Google Scholar
Bölsche, W., 1870. Polypi. In: Credner, H. (eds): Die Kreide von New Jersey. Zeitschrift der Deutschen geologischen Gesellschaft, 215218.Google Scholar
Brünnich Nielsen, K., 1922, Zoantharia from Senon and Paleocene in Denmark and Skaane. Det Kongelige Danske Videnskabernes Selskab Biologiske Skrifter, naturhistorisk og mathematisk Afdeling 8(5): 199233, 4 pls.Google Scholar
Bryan, J.R. & Jones, D.S., 1989. Fabric of the Cretaceous-Tertiary marine macrofaunal transition at Braggs, Alabama. Palaeogeography, Palaeoclimatology, Palaeoecology 69: 279301. DOI: 10.1016/0031-0182(89)90170-3.CrossRefGoogle Scholar
Catullo, T.A., 1852. Cenni sopra il terreno di sedimento superiore delle Provincie Venete e descrizione di alcuni polipari fossili ch’esse rachiude. Memorie reale Istituto Veneto di Scienze (for 1847-1852) 4: 144.Google Scholar
Collignon, M., 1931. La faune du Cénomanien à fossiles pyriteux du Nord de Madagascar. Annales de Paléontologie 20: 41104, 2 pls.Google Scholar
Conrad, T.A., 1848. Observations on the Eocene formation and descriptions of one hundred and five new species of that period, from the vicinity of Vicksburg, Mississippi, with an appendix. Proceedings of the Academy of Natural Sciences of Philadelphia 3: 1708. http://archive.org/details/proceedingsofaca03acad Google Scholar
d’Achiardi, A.D., 1875. Coralli eocenici dei Friuli. Società Toscana di Scienze naturali 1: 7086, 115–124, pls 1, 2, 6, 7. http://archive.org/details/attidellasocie1187576socit Google Scholar
Dietrich, W.O., 1917. Areopsammia, eine neue eupsammide Koralle aus der obersten Kreide. Sitzungsberichte der Gesellschaft der naturforschenden Freunde zu Berlin 4: 303307, http://hdl.handle.net/2027/mdp.39015035499642 Google Scholar
Duncan, P.M., 1863. On the fossil corals of the West Indian islands—Part I. Quarterly Journal of the Geological Society of London 19(1-2): 406458, pls 13–16. DOI: 10.1144/GSL.JGS.1863.019.01-02.40.CrossRefGoogle Scholar
Duncan, P.M., 1869. Part II, No. 1. Corals from the White Chalk, the Upper Greensand, and the Red Chalk of Hunstanton. In: Duncan, P.M., 1866–1872. A monograph of the British fossil corals. Second Series. Being a supplemant to the ‘Monograph of the British Fossil Corals,’ by MM. Milne Edwards and Jules Haime, Monograph of the Palaeontological Society London 2, 126, pls 1–9. DOI: 10.1144/GSL.JGS.1864.020.01-02.09.Google Scholar
Duncan, P.M., 1880. A monograph of the fossil corals and Alcyonaria of Sind. Memoirs of the Geological Survey of India, Palaeontologia Indica 14(1): 1110, pls 1–28. http://sdrv.ms/Tu7Efz Google Scholar
Duncan, P.M., 1884. A revision of the families and genera of the sclerodermic Zoantharia Edwards et Haime, or Madreporaria (M. rugosa excepted). Journal of the Linnean Society of London, Zoology 18(104-105): 1204. http://jgslegacy.lyellcollection.org/cgi/doi/10.1144/GSL.JGS.1884.40.01-04.46 CrossRefGoogle Scholar
Duncan, P.M. & Wall, G.P., 1865. A notice of the geology of Jamaica, especially with reference to the district of Clarendon; with descriptions of the Cretaceous, Eocene and Miocene corals of the islands. Quarterly Journal of the Geological Society of London 21(1-2): 114, pls 1, 2. DOI: 10.1144/GSL.JGS.1865.021.01-02.08.CrossRefGoogle Scholar
Durham, J.W., 1942. Eocene and Oligocene coral faunas of Washington. Journal of Paleontology 16(1): 84104.Google Scholar
Faujas-Saint-Fond, B., 1798-1803. Histoire naturelle de la Montagne de Saint-Pierre de Maëstricht. H.J. Jansen (Paris), pp. 183214, pls 34–42, http://books.google.com/books?id=mDFDAAAAcAAJ Google Scholar
Felix, J.P., 1903. Studien über die korallenführenden Schichten der oberen Kreideformation in den Alpen und in den Mediterrangebieten. Palaeontographica 49: 163359, http://archive.org/details/palaeontographic49pala Google Scholar
Felix, J.P., 1906. Über eine Korallenfauna aus der Kreideformation Ost -Galiziens. Zeitschrift der deutschen geologischen Gesellschaft 58: 3852, http://books.google.com/books?id=SYYPAAAAIAAJ CrossRefGoogle Scholar
Felix, J., 1909. Über eine untertertiäre Korallenfauna aus der Gegend von Barcelona. Palaeontolographica 56: 113136, pl. 12.Google Scholar
Filkorn, H.F., 1994. Fossil scleractinian corals from James Ross Basin, Antarctica. Antarctic Research Series 65: 196. DOI: 10.1029/AR065.Google Scholar
Filkorn, H.F., Avendano-Gil, J., Coutiño-José, M.A. & Vega-Vera, F.J., 2005. Corals from the Upper Cretaceous (Maastrichtian) Ocozocoautla Formation, Chiapas, Mexico. Revista Mexicana de Ciencias Geológicas 22(1): 115128, http://satori.geociencias.unam.mx/22-1/(10)Filkorn.pdf Google Scholar
Floris, S., 1972. Scleractinian corals from the Upper Cretaceous and Lower Tertiary of Nugssuaq, West Greenland. Meddelelser om Grønland 196(1): 1132. DOI: 10.34194/bullggu.v100.6641.Google Scholar
Floris, S., 1979. Maastrichtian and Danian corals from Denmark. In: Birkelund, T. & Bromley, R.G. (eds): The Maastrichtian and Danian of Denmark. Cretaceous-Tertiary Boundary Events Symposium, 18-24 September 1979. University of Copenhagen: 5 pp.Google Scholar
Forbes, E., 1846. Report on the Fossil Invertebrata from Southern India, collected by Mr. Kaye and Mr. Cunliffe. Transactions of the Geological Society of London 7(1): 97174. DOI: 10.1144/transgslb.7.97.CrossRefGoogle Scholar
Fromentel, E. de, 1861. Introduction à létude des polypiers fossiles. Mémoires de la Société dÉmulation du Département du Doubs 5: 1357, http://archive.org/details/mmoiresetcomptes05emul Google Scholar
Fromentel, E. de, 1877. Zoophytes, terrains crétacés (10). In: d’Orbigny, A (eds): Paléontologie Française 8. Masson (Paris): 433480, pls 109-120.Google Scholar
Frost, S.H. & Langenheim, R.L., 1974. Cenozoic reef biofacies. Tertiary larger Foraminifera and scleractinian corals from Chiapas. Mexico, Northern Illinois University Press (Chicago), pp. 388 Google Scholar
Gabb, W.M., 1860. Descriptions of new species of American Tertiary and Cretaceous fossils. Journal of the Academy of Natural Sciences of Philadelphia 4: 375406, http://archive.org/details/journalofacad24185860acad Google Scholar
Gameil, M., 2005. Palaeoecological implications of Upper Cretaceous solitary corals, United Arab Emirates/Oman Borders. Revue de Paléobiologie 24(2): 515532.Google Scholar
Gill, J.R., Cobban, W.A. & Kier, P.M., 1966. The Red Bird section of the Upper Cretaceous P ierre Shale in Wyoming. United States Geological Survey, Professional Paper 393-A: A1A73. DOI: 10.3133/pp393A.Google Scholar
Goldfuss, A. 1826–1844. Petrefacta Germaniae tam ea, quae in Museo Universitatis Regiae Borussicae Fridericae Vilhemmiae Rhenanae servatur quam alia quaecunque in Museis Hoeninghusiano Muensteriano Aliisque extant, 3 volumes: 240 pp. + 312 pp. + 128 pp., 200 pls. Arnz & Co., Düsseldorf. http://sdrv.ms/WzHwEL.Google Scholar
Görmüş, M., Demircan, H., Kadioğlu, Y.K., Yağmurlu, F. & Us, M.S., 2019. Microborings as indication of cryptic life modes in the foraminifer Orbitoides: Maastrichtian sediments of the Haymana and Nallıhan districts (Ankara, Turkey). Turkish Journal of Earth Sciences 28(2): article3. DOI: 10.3906/yer-1804-17.CrossRefGoogle Scholar
Gregory, J.W., 1898. A collection of Egyptian fossil Madreporaria. Geological Magazine (new series 4) 5(6): 241251. DOI: 10.1017/S0016756800144036.CrossRefGoogle Scholar
Gregory, J.W., 1900. On the geology and fossil corals and echinids of Somaliland. The Quarterly Journal of the Geological Society of London 56(1-4): 2645. DOI: 10.1144/GSL.JGS.1900.056.01-04.06.CrossRefGoogle Scholar
Hagenow, F.von, 1839. Monographie der Rügen‘schen Kreide-Versteinerungen (1). Phytolithen und Poliparien. Neues Jahrbuch für Mineralogie, Geologie und Paläontologie 1839: 251296, http://hdl.handle.net/2027/nyp.33433062729326 Google Scholar
Hansen, T. & Surlyk, F., 2014. Marine macrofossil communities in the uppermost Maastrichtian chalk of Stevns Klint, Denmark. Palaeogeography, Palaeoclimatology, Palaeoecology 399: 323344. DOI: 10.1016/j.palaeo.2014.01.025.CrossRefGoogle Scholar
Hennig, A., 1899. Studier öfver den baltiska Yngre kritans bildningshistoria. Geologiska Föreningen i Stockholm Förhandlingar 21(1): 1982, 133–188.CrossRefGoogle Scholar
Jagt, J.W.M., 2000. Late Cretaceous-Early Paleocene echinoderms and the K/T boundary in the southeast Netherlands and the northeast Belgium – Part 4: Echinoids. Scripta Geologica 121: 181375.Google Scholar
Jell, J.S., Cook, A.G. & Jell, P.A., 2011. Australian Cretaceous Cnidaria and Porifera. Alcheringa 35(2): 241284. DOI: 10.1080/03115518.2011.532322.CrossRefGoogle Scholar
Khazaei, A.R., Yazdi, M. & Löser, H., 2009. Paleontology and paleobiogeography of scleractinian corals in rudist bearing carbonate units of Tarbur Formation, Semirom section. Sedimentary Facies 2(1): 116. DOI: 10.22067/sed.facies.v2i1.826.Google Scholar
Kiessling, W. & Baron-Szabo, R.C., 2004. Extinction and recovery patterns of scleractinian corals at the K/T-boundary. Palaeogeography, Palaeoclimatology, Palaeoecology 214(3): 195223. DOI: 10.1016/j.palaeo.2004.05.025.CrossRefGoogle Scholar
Kner, P., 1848. Die Versteinerungen des Kreidemergels von Lemberg und seiner Umgebung. Naturwissenschaftliche Abhandlungen 3: 142, pls 1-5.Google Scholar
Koby, F., 1886. Monographie des polypiers jurassiques de la Suisse. Sixième partie. Mémoires de la Société paléontologique Suisse 13: 305352, pls 89.Google Scholar
Koby, F., 1887. Monographie des polypiers jurassiques de la Suisse (8). Mémoires de la Société paléontologique Suisse 14: 353400, pls 99–108. http://books.google.com/books?id=xt8QAAAAIAAJ Google Scholar
Kühn, O., 1933. Das Becken von Isfahan-Saidabad und seine altmiocäne Korallenfauna. Palaeontographica Abteilung A79: 143221. http://sdrv.ms/QrrYxl Google Scholar
Kuzmicheva, E.I., 1985. Cretaceous and Paleogene corals of the Ukraine. Byulleten’ Moskovskogo Universiteta, Otdel Geologicheskii 40(5): 3035.Google Scholar
Kuzmicheva, E.I., 1987. Verkhnemelovyye i paleogenovyye korally SSSR. Nauka (Moskva), pp. 187 Google Scholar
Lamarck, J.B. de.Histoire naturelle des animaux sans vertèbres, présentant les caractères généraux et particuliers de ces animaux, leur distribution, leurs classes leurs familles, leurs genres, et la citation des principales espèces qui s’y rapportent; précédée d’une introduction offrant la détermination des caractères essentiels de l’animal, sa distinction du végétal et des autres corps naturels, enfin, l’exposition des principes fondamentaux de la zoologie 2: 1–568. Verdière, Paris. 1816. http://archive.org/details/histoirenaturell22lama CrossRefGoogle Scholar
Leymerie, A., 1846. Mémoire sur le terrain à Nummulites (épicrétacé) des Corbières et de la Montagne Noire. Mémoires de la Société géologique de France (2) 1: 337372, pls 12–17.Google Scholar
Leloux, J., 1999. Numerical distribution of Santonian to Danian corals (Scleractinia, Octocorallia) of southern Limburg, the Netherlands. Geologie en Mijnbouw 78(2): 191195. DOI: 10.1023/A:1003743301625.CrossRefGoogle Scholar
Leloux, J, 2003. Columactinastraea anthonii sp. nov. (Scleractinia, Astrocoeniina), a new coral species from the Maastrichtian (Upper Cretaceous) of the Netherlands. Scripta Geologica 26: 185201, https://repository.naturalis.nl/pub/219299 Google Scholar
Leloux, J., 2004. Notes on taxonomy and taphonomy of two upper Maastrichtian (Upper Cretaceous) scleractinian corals from Limburg, the Netherlands. Scripta Geologica 127: 313339, http://www.repository.naturalis.nl/record/214518 Google Scholar
Löser, H., 2011. Revision of Actinastrea, the most common Cretaceous coral genus. Paläontologische Zeitschrift 86(1): 1522. DOI: 10.1007/s12542-011-0110-4.CrossRefGoogle Scholar
Löser, H., 2012. Corals from the Maastrichtian Ocozocoautla Formation (Chiapas, Mexico) – a closer look. Revista Mexicana de Ciencias Geológicas 29(4): 534550.Google Scholar
Marini, M., 1942. Revisione della fauna Neocretacica della Libia: coralli. Annali del Museo Libico di Storia Naturale 3: 7582.Google Scholar
Mantell, G.A., 1822. The fossils of the South downs or illustrations of the geology of Sussex. Lupton Relfe (London), 327 pp. DOI: 10.1017/CBO9780511711190 Google Scholar
Metwally, M.H.M., 1996. Maastrichtian scleractinian corals from the western flank of the Oman Mountains, U.A.E. and their paleoecological significance. Neues Jahrbuch für Geologie und Palöontologie 6(6): 375388. DOI: 10.1127/njgpm/1996/1996/375.CrossRefGoogle Scholar
Michelin, H., 1846. In: Michelin, H., 1840-1847. Iconographie zoophytologique. Description par localités et terrains des polypiers fossiles de France. Michelin, H, Bertrand (Paris) pp. 185248.Google Scholar
Milne Edwards, H. & Haime, J., 1848a. Recherches sur les polypiers; deuxième mémoire. Monographie des Turbinolides. In: Annales des Sciences naturelles, Zoologie III-9: 211,–344, pls 7–10. https://gallica.bnf.fr/ark:/12148/bpt6k5852038c Google Scholar
Milne Edwards, H. & Haime, J., 1848b. Recherches sur les polypiers; troisième mémoire. In: Monographie des Eupsammides. Annales des Sciences Naturelles. Paris, Zoölogie III-10, 65-114 + pls 1. https://gallica.bnf.fr/ark:/12148/bpt6k55071066.Google Scholar
Milne Edwards, H. & Haime, J., 1848c. Recherches sur les polypiers; quatrième mémoire. Monographie des Astréides. In: Annales des Sciences Naturelles. Paris, Zoölogie III-10, 209320 + pls 5–9. https://gallica.bnf.fr/ark:/12148/bpt6k55071066 Google Scholar
Milne Edwards, H. & Haime, J., 1849. Recherches sur les polypiers; quatrième mémoire. In: Monographie des Astréides (1). Annales des Sciences Naturelles. Paris, Zoölogie III-11, 233312. https://gallica.bnf.fr/ark:/12148/bpt6k58497111.Google Scholar
Milne Edwards, H. & Haime, J., 1857. Classification et description des zoanthaires sclérodermes de la section des madréporaries apores. In: Milne Edwards, H. 1857–1860. Histoire naturelle des coralliaires ou polypes propements dits 2, 633 pp. http://archive.org/details/histoirenaturell02milne Google Scholar
Mitchell, S.F., 2002. Palaeoecology of corals and rudists in mixed volcaniclastic carbonate small-scale rhythms (Upper Cretaceous, Jamaica). Palaeogeography, Palaeoclimatology, Palaeoecology 186(3-4): 237259. DOI: 10.1016/S0031-0182(02)00505-9.CrossRefGoogle Scholar
Mitchell, S.F., Stemann, T., Blissett, D., Brown, I., Ebanks, O.’Brian, Gunter, W., Miller, G., D., J., Pearson, A.G.M., Wilson, B. & Young, W.A., 2004. Late Maastrichtian rudist and coral assemblages from the Central Inlier, Jamaica: towards an event stratigraphy for shallow- water Caribbean limestones. Cretaceous Research 25(4): 499507. DOI: 10.1016/j.cretres.2004.04.002.CrossRefGoogle Scholar
Morren, C.F.A., 1828. Quaeritur descriptio coralliorum fossilium in belgio repertorum. Annales Academiae Groninganae 1827/1828(3): 176, pls 1–22. DOI: 10.5962/bhl.title.11945.Google Scholar
Myers, R.L., 1968. Biostratigraphy of the Cardenas Formation (Upper Cretaceous) San Luis Potosi Mexico. Paleontologia Mexicana 24: 189. http://www.ojs-igl.unam.mx/index.php/Paleontologia/article/view/34 Google Scholar
Nötling, F., 1897. Fauna of the Upper Cretaceous (Maëstrichtian) beds of the Mari Hills. Fauna of Baluchistan. Memoirs of the Geological Survey of India, Palaeontologia Indica (16) 1: 179, http://hdl.handle.net/2027/uva.x002210614 Google Scholar
Ogilvie, M.M., 1897. Die Korallen der Stramberger Schichten. Palaeontographica 7A: 73287, http://sdrv.ms/QWbjTX Google Scholar
Oppenheim, P., 1901. Ueber einige alttertiäre Faunen der österreichisch ungarischen Monarchie. Beiträge zur Paläontologie Und Geologie Österreich-Ungarns Und Des Orients 13: 145277.Google Scholar
Oppenheim, P., 1930. Die Anthozoen der Gosauschichten in den Ostalpen. The author (Berlin-Lichterfelde): 604 pp.Google Scholar
Orbigny, A.D. d’, 1850. Prodrome de Paléontologie stratigraphique universelle des animaux mollusques & rayonnés faisant suite au “Cours élémentaire de paléontologie et de géologie stratigraphiques” 2: 1–428. Victor Masson.CrossRefGoogle Scholar
Özer, S., 1992. Presence of rudist bearing limestone blocks derived from the Arabian Platform in Gevas (Van) ophiolite. Bulletin of the Mineral Research and Exploration 114: 7582.Google Scholar
Pons, J.M., Gallemí, J., Höfling, R. & Moussavian, E., 1994. Prodrome de Paléontologie stratigraphique universelle des animaux mollusques & rayonnés faisant suite au. Cours élémentaire de paléontologie et de géologie stratigraphiques 2: 271307.Google Scholar
Pratz, E. 1910. A Korállok Leírása. In: Pethö, G., 1910. A Petervaradi Hegyseg (Fruska Gora) kretaidoszaki (hiperszenon-) faunaja. MAgyar Természettudoányi Társulat (Budapest, Kiadja a Kir): 299317.Google Scholar
Quenstedt, F.A., 1881. Petrefactenkunde Deutschlands. Der ersten Abtheilung. Sechster Band. Korallen (Röhren- und Sternkorallen, x+ 1093 pp., pls 155–184. Fues’s Verlag (R. Reisland). http://archive.org/details/petrefactenkunde7881quen.Google Scholar
Reig Oriol, J.M., 1987. Revisión y validez del género Anisoria (Escleractinia Cretácica). Trabajos del Museo Geológico del Seminario C. de Barcelona 222: 39, 2 plsx.Google Scholar
Reig Oriol, J.M., 1992. Madreporarios cretácicos de España y Francia. Barcelona.: José M. Reig Oriol. 69 pp.Google Scholar
Rengarten, V.P., 1959. Stratigrafiya verkhnemelovykh otlozhenii Malogo Kavkaza. Regional’naya Stratigrafiya SSSR 6: 506 pp. (in Russian).Google Scholar
Reuss, A.E., 1845–1846. Die Versteinerungen der Böhmischen Kreideformation. E. Schweizerbart’sche Verlagsbuchhandlung und Druckerei (Stuttgart): iv +58 pp.; iv +148 pp., 51 pls. http://archive.org/details/dieversteinerung00reus Google Scholar
Reuss, A.E., 1852. Ueber drei Polyparienspezies aus dem oberen Kreidemergel von Lemberg. Palaeontographica 3: 117120.Google Scholar
Reuss, A.E., 1854. Beiträge zur Characteristik der Kreidegeschichten in den Ostalpen besonders im Gosauthale und am Wolfgangsee. Denkschrifte der Österreichischen Akademie der Wissenschaften zu Wien 7: 1157. http://archive.org/details/denkschriftender07kais Google Scholar
Reuss, A.E., 1864. Die fossilen Foraminiferen, Anthozoen und Bryozoen von Oberburg in Steiermark. In: Denkschriften der kaiserlichen Akademie der Wissenschaften, mathematisch-naturwissenschaftliche Classe. vol. 23, p. 138, 10 pls.Google Scholar
Roemer, F.A., 1888. Über eine durch die Häufigkeit Hippuriten-artiger Chamiden ausgezeichnete Fauna der Oberturonen Kreide von Texas. Palæontologische Abhandlungen 4(4): 281296.Google Scholar
Roniewicz, E. & Morycowa, E., 1993. Evolution of the Scleractinia in the light of microstructural data. Courier Forschungsinstitut Senckenberg 164: 233240.Google Scholar
Rosen, B.R. & Turnšek, D., 1989. Extinction patterns and biogeography of scleractinian corals across the Cretaceous/Tertiary boundary. Memoirs of the Association of Australasian Palaeontologists 8: 355370.Google Scholar
Rossi Ronchetti, C., 1955. Revisione della fauna neocretacica della Libia: coralli, fam. Smilotrochidae, Caryophylliidae, Parasmiliidae, Eupsammidae. Rivista Italiana di Paleontologia e Stratigrafia 61(3): 101123.Google Scholar
Schafhauser, A., Götz, S., Baron-Szabo, R.C. & Stinnesbeck, W., 2003. Depositional environment of coral-rudist associations in the Upper Cretaceous Cardenas Formation (central Mexico). Geologia Croatica 56(2): 187198. DOI: 10.4154/GC.2003.12.CrossRefGoogle Scholar
Scotese, C.R. Paleomap project, 2014. www.scotese.com.Google Scholar
Siemiradzki, S., 1927. Korale gornokredowe Polski. Kosmos 51: 313326.Google Scholar
Smith, A.B., Morris, N.J., Gale, A.S. & Rosen, B.R., 1995. Late Cretaceous (Maastrichtian) echinoid-mollusc-coral assemblages and palaeoenvironments from a Tethyan carbonate platform succession, northern Oman Mountains. Palaeogeography, Palaeoclimatology, Palaeoecology 119(1–2): 155168. DOI: 10.1016/0031-0182(95)00066-6.CrossRefGoogle Scholar
Sohl, N.F. & Koch, C.F., 1984. Upper Cretaceous (Maestrichtian) larger invertebrates from the Haustator bilira Assemblage Zone in the Atlantic Coastal Plain with further data for the East Gulf. United States Geological Survey Open File Report 87-194: 1194. DOI: 10.3133/ofr84687.Google Scholar
Sowerby, J., Sedgwick, A. & Murchison, R.I., 1832. [Names and plate with fossil corals]. In: Sedgwick, A., Murchison, R.I. (eds): A Sketch of the Structure of the Eastern Alps; with Sections through the Newer Formations of the Northern Flanks of the Chain, and through the Tertiary Deposits of Styria, Transactions of the Geological Society of London. Second Series 3(2), 422 + pl. 37 figs 1-4.Google Scholar
Squires, D.F., 1958. The Cretaceous and Tertiary corals of New Zealand. New Zealand Geological Survey, Paleontological Bulletin 29: 107 pp.Google Scholar
Squires, D.F., 1962. Additional Cretaceous and Tertiary corals from New Zealand. Transactions of the Royal Society of New Zealand, Geology 1(9): 133150.Google Scholar
Stephenson, L.W., 1916. North American Upper Cretaceous corals of the genus Micrabacia . United States Geological Survey, Professional Paper 98: 115131. DOI: 10.3133/pp98J.Google Scholar
Stephenson, L.W., 1941. The larger invertebrate fossils of the Navarro Group of Texas. The University of Texas Publication 4101: 1625. DOI: 10.26153/TSW/2F4805.Google Scholar
Stolarski, J. & Vertino, A., 2007. First Mesozoic record of the scleractinian Madrepora from the Maastrichtian siliceous limestones of Poland. Facies 53(1): 6778. DOI: 10.1007/S10347-006-0089-6.CrossRefGoogle Scholar
Stoliczka, F., 1873. The corals or Anthozoa from the Cretaceous rocks of South India. Memoirs of the Geological Survey of India, Palaeontologia Indica 4) 8: 130202,–pls 1–12.Google Scholar
Sundaram, R., Henderson, R., Ayyasami, K. & Stilwell, J., 2001. A lithostratigraphic revision and palaeoenvironmental assessment of the Cretaceous System exposed in the onshore Cauvery Basin, southern India. Cretaceous Research 22(6): 743762. DOI: 10.1006/cres.2001.0287.CrossRefGoogle Scholar
Tchéchmédjiéva, V.L., 1970. Tsiklolitoidni madrepori ot mastrikhta v Breznishko, yugozapadna Balgariya. Godišnik na Sofijskija Universitet “Sv. Kliment Ohridski. Geologo-geografski Fakultet 62: 3545.Google Scholar
Tchéchmédjiéva, V.L., 1986. Paléoécologie des Madréporaires du Crétacé supérieur dans le Srednogorie de l’Ouest (Bulgarie occidentale). Geologica Balcanica 16(5): 5581.Google Scholar
Tchéchmédjiéva, V.L., 1995. Crétacé supérieur, Chaetetides (Porifera) et Anthozoaires (Coelenterat). Fossilia Bulgarica 5b. Presses Universitaires, St. Kliment Ohridski (Sofia): 143, 26 pls.Google Scholar
Tennant, J.P., Mannion, P.D., Upchurch, P., Sutton, M.D. & Price, G.D., 2017. Biotic and environmental dynamics through the Late Jurassic-Early Cretaceous transition: evidence for protracted faunal and ecological turnover. Biological Reviews 92(2): 776814. DOI: 10.1111/brv.12255.CrossRefGoogle ScholarPubMed
Trauth, F., 1911. Die oberkretazische Korallenfauna von Klogsdorf in Mähren. Zeitschrift des Mährischen Landesmuseums 11: 85184, http://archive.org/details/zeitschriftdesm1011191011huck Google Scholar
Turnšek, D., 1992. Tethyan Cretaceous corals in Yugoslavia, New aspects on Tethyan Cretaceous fossil assemblages. In: Kollmann, H.A. & Zapfe, H. (eds): Schriftenreihe der Erdwissenschaftlichen Kommissionen. vol. 9, p. 155170. DOI: 10.1007/978-3-7091-5644-5_9.Google Scholar
Umbgrove, J.H.F., 1925. Die Anthozoa uit het Maastrichtsche tufkrijt. Leidsche Geologische Mededeelingen 1: 83126, pls 8-11. http://sdrv.ms/15QWFX2 Google Scholar
Vaughan, T.W., 1899. Some Cretaceous and Eocene corals from Jamaica. Bulletin of the Museum of Comparative Zoology at Harvard University 34: 227256, pls 36-41. http://archive.org/details/mobot31753003646046 Google Scholar
Vaughan, T.W., 1900a, Trochocyathus woolmani, a new coral from the Cretaceous of New Jersey. Proceedings of the Academy of Natural Sciences of Philadelphia, 52, 436437.http://archive.org/details/proceedingsofaca52acaduoft Google Scholar
Vaughan, T.W., 1900b. The Eocene and lower Oligocene coral faunas of the United States with descriptions of a few doubtfully Cretaceous species. United States Geological Survey, Monograph 39: 1263. DOI: 10.3133/m39.Google Scholar
Vaughan, T.W., 1919. Fossil corals from central America, Cuba, and Porto Rico, with an account of the American Tertiary, Pleistocene, and Recent coral reefs. Smithsonian Institution Bulletin 103: 1612. DOI: 10.5962/bhl.title.46527.Google Scholar
Vaughan, T.W., 1920. Corals from the Cannonball marine member of the Lance Formation. United States Geological Survey, Professional Paper 128: 6166. DOI: 10.3133/pp128A.Google Scholar
Vaughan, T.W., 1923. Decription of a new coral, Fauna of the Sooke formation, Vancouver Island. In: Clark, B.L. & Arnold, R. (eds): University of California Publications, Bulletin of the Department of Geological Sciences. vol. 14: 175 pp.Google Scholar
Vaughan, T.W. & Popenoe, W.P., 1935. The Coral Fauna of the Midway Eocene of Texas. Bulletin of the University of Texas 3301: 325343, pls 3-4.Google Scholar
Vaughan, T.W. & Wells, J.W., 1943. Revision of the suborders, families and genera of the Scleractinia. Geological Society of America, Special Paper 44: 1363. DOI: 10.1130/SPE44.CrossRefGoogle Scholar
Vidal, L.M., 1917. Nota paleontológica sobre el Cretácico de Cataluña. In: Congreso de la Associación española para el Progreso de las Ciencias, 319, pls 1-4.Google Scholar
Vidal, L.M., 1921. Contribution a la paleontologia del Cretacico de Cataluna. Memorias de la Real Academia de Ciencias y Artes de Barcelona 17: 89107.Google Scholar
Videira-Santos, R., Tobin, T.S. & Scheffer, S.M., 2022. New occurrences of caryophylliid and fungiacyathid scleractinian corals from the Santa Marta and Snow Hill Island formations (Upper Cretaceous, Antarctica). Cretaceous Research 140: 105338. DOI: 10.1016/j.cretres.2022.105338.CrossRefGoogle Scholar
Wade, B., 1926. The fauna of the Ripley Formation on Coon Creek, Tennessee. United States Geological Survey, Professional Paper 137: 1272. DOI: 10.3133/pp137.Google Scholar
Walch, J.E.I., 1775. Abhandlungen von den Astroiten. Der Naturforscher 5: 2361.Google Scholar
Wells, J.W., 1932. Corals of the Trinity Group of the Comanchean of central Texas. Journal of Paleontology 6(3): 225256, http://www.jstor.org/stable/1298104 Google Scholar
Wells, J.W., 1933. Corals of the Cretaceous of the Atlantic and Gulf Coastal Plains and Western Interior of the United States. Bulletins of American Paleontology 18(67): 85288, http://archive.org/details/bulletinsofameri186467193133pale Google Scholar
Wells, J.W., 1934. Some fossil corals from the West Indies. Proceedings of the United States National Museum 83 2975(2975): 71110. DOI: 10.5479/si.00963801.83-2975.71.CrossRefGoogle Scholar
Wells, J.W., 1935. Corals from the Cretaceous and Eocene of Jamaica. Annals and Magazine of Natural History (series 10) 15: 183194, pls 10-12.CrossRefGoogle Scholar
Wells, J.W., 1941. Cretaceous and Eocene corals from northwestern Peru. Bulletins of American Paleontology 98(26): 126, http://archive.org/details/bulletinsofameri95100pale Google Scholar
Wells, J.W., 1947. Coral Studies, Part III. Three new Cretaceous corals from Texas and Alabama, Part IV. A new species of Phyllangia from the Florida Miocene, Part V. A new Coenocyathus from Florida. Bulletins of American Paleontology 31(123): 162176, http://archive.org/details/bulletinsofameri118128pale Google Scholar
Wells, J.W., 1956. Scleractinia, Treatise on Invertebrate Paleontology, Part F. In: Moore, R.C., Geological Society of America, Boulder/The University of Kansas Press (Lawrence): F328F444. DOI: 10.17161/dt.v0i0.5539.CrossRefGoogle Scholar
White, C.A., 1888. VII.—On Hindeastræa, a new generic form of Cretaceous Astræidæ. Geological Magazine 5) 8(8): 362364. DOI: 10.1017/S0016756800182196.CrossRefGoogle Scholar
Wolleben, J.A., 1977. Paleontology of the Difunta Group (Upper Cretaceous-Tertiary) in northern Mexico. Journal of Paleontology 51(2): 373398, http://www.jstor.org/stable/1303616 Google Scholar
Figure 0

Table 1. List of Maastrichtian scleractinian coral genera and their family assignments; *previously (**potentially previously) established microstructural group

Figure 1

Table 2. Corallite size and types of corallite integration of the Maastrichtian scleractinian coral species; 186 taxa have been included in our evaluation (19 species were omitted due to a lack of sufficient data). Corallite sizes: small (s) = up to 2.5 mm; medium (m) = >2.5–9 mm; large (l) = >9 mm. For information on individual species, reference is made to Table 4

Figure 2

Table 3. List of localities with Maastrichtian strata from which the coral material has been collected. Co-ordinates and palaeo co-ordinates representative of distributional patterns are from Paleobiology Database (see paleobiodb.org, for more details on individual sites); palaeoclimate zones estimated based on paleomaps by Tennant et al. (2017) and the Paleomap project at www.scotese.com: (ar) = arid; (ct) = cool temperate; (pt) = para- to subtropical; (tr) = tropical; (wt) = warm temperate

Figure 3

Table 4. Alphabetical list of Maastrichtian scleractinian coral species, localities from which they were collected and remarks on their taxonomic position. Age of strata at collecting site: (*) = Maastrichtian (unspecified); (1) = lower Maastrichtian; (2) = mid-Maastrichtian; (3) = upper Maastrichtian (for more details on locations and recent taxonomic updates, see Paleobiology Database [paleobiodb.org]). For further information on localities, see also Table 3, and for excluded taxa herein, reference is made to Baron-Szabo (2006, 2008) and updates herein. Types of corallite integration are as follows: cp = cerioid-plocoid; s = solitary (no integration); htm = hydno-thamnasterioid-meandroid; b = branching. Corallite sizes: small (s) = up to 2.5 mm; medium (m) = >2.5–9 mm; large (l) = >9 mm. * = might occur in more than one type of corallite integration or overlapping types of integration

Figure 4

Table 5. List of localities with Maastrichtian strata from which the coral material was collected, number of species (colonial/solitary), and palaeoenvironment recorded for each area (*palaeoecological data retrieved from original publications with updates provided by Paleobiology Database [paleobiodb.org]). For co-ordinates/palaeo co-ordinates of localities, see Table 3

Figure 5

Figure 1. Palaeomap showing localities with Maastrichtian coral faunas included in the present study. 1 = Antarctica; 2 = Australia; 3–4 = Madagascar; 5 = India; 6 = Oman; 7 = UAE; 8 = Iran; 9 = Ukraine; 10 = Türkiye; 11 = Turkmenistan; 12–13 = Kazakhstan; 14 = Russia; 15 = Bulgaria; 16 = Türkiye; 17 = eastern Serbia; 18–19 = Ukraine; 20 = Poland; 21 = Denmark; 22 = the Netherlands-Belgium; 23 = Germany; 24 = Spain; 25 = Libya; 26 = Senegal; 27 = Greenland; 28–34 = USA; 35–36 = Mexico; 37 = Jamaica; 38 = Peru. Palaeomap modified from Paleomap project (Scotese, 2014; www.scotese.com). For palaeo co-ordinates, see Table 3.

Figure 6

Figure 2. Maastrichtian scleractinian corals from localities in the Netherlands-Belgium, Jamaica, Senegal and Madagascar (*denoting images derived from http://colhelper.mnhn.fr, by permission of Dr Sylvain Charbonnier, Muséum national d’Histoire naturelle, Paris, August 2020). (A) Actinastrea goldfussi (d’Orbigny, 1850) (MB.K 3742), upper Maastrichtian, southern Limburg, the Netherlands; upper surface of colony, corallite view, contrast inverted, mouldic preservation (scale bar equals 22 mm). (B) *Dendrophyllia sp. (MNHN.F.R10840), Maastrichtian, Popenguine, Senegal; upper surface of colony, corallite view (scale bar equals 7 mm). (C) *Dendrophyllia sp. (MNHN.F.R10840), Maastrichtian, Popenguine, Senegal; upper surface of colony, close-up view of corallites (scale bar equals 3.5 mm). (D) Actinhelia elegans (Goldfuss, 1826) (MB.K 3688); upper Maastrichtian, southern Limburg, the Netherlands; upper surface of colony, mouldic preservation (scale bar equals 13.5 mm). (E) Cunnolites polymorphus (Goldfuss, 1826) (MB.K3103); upper Maastrichtian, southern Limburg, the Netherlands; close-up of Fig. 2F (scale bar equals 14 mm). (F) Cunnolites polymorphus (Goldfuss, 1826) (MB.K 3103); upper Maastrichtian, southern Limburg, the Netherlands; upper surface, corallite view, mouldic preservation (scale bar equals 35 mm). (G) Latomeandra boltonae (Wells, 1934) (holotype, USNM I 74479), upper Maastrichtian, Catapudensis, Jamaica; upper surface of colony, corallite view (scale bar equals 11.5 mm). (H) Latomeandra boltonae (Wells, 1934) (holotype, USNM I 74479), upper Maastrichtian, Catapudensis, Jamaica; upper surface of colony, lateral view (scale bar equals 45 mm). (I) *Balanophyllia caulifera (Conrad, 1848), holotype of Palaeopsammia mitsinjoensis (Alloiteau, 1958) (MNHN.F.J08195); Maastrichtian, Mitsinjo, Madagascar; corallite view of corallum, polished (scale bar equals 7.5 mm). (J, K) *Stephanosmilia madagascariensis (Alloiteau, 1958) (MNHN.F.M05336); Maastrichtian, Popenguine, Senegal; (J) upper surface of corallum, corallite view, (K) lateral view (scale bar equals 3 mm). (L, M) Actinacis reussi (Oppenheim, 1930) (USNM field number 363); Titanosarcolites Limestone, Maastrichtian, Jerusalem Mountain Inlier, Parish of Hanover; Jamaica; (L) corallite view of colony, thin section (scale bar equals 5 mm), (M). close-up of Fig. 1K (scale bar equals 2.5 mm). (N) Paracycloseris nariensis (Duncan, 1880) (USNM field number 557a); upper Maastrichtian, Rio Minho, Jamaica; corallite view of corallum, thin section (scale bar equals 4 mm).

Figure 7

Figure 3. Maastrichtian solitary corals from the Maastrichtian type area (the Netherlands-Belgium). (A, B) Caryophyllia konincki (Milne Edwards & Haime, 1848a) (NHMM RH 204), upper Maastrichtian, Meerssen Member, Maastricht Formation, Eben Emael (Marnebel quarry complex), northeast Belgium (scale bar equals 2 mm). (C) Trochosmilia faujasi Milne Edwards & Haime, 1848c (RGM.29137), upper Maastrichtian, Maastricht Formation, Meerssen Member inferred, Sint-Pietersberg area; mouldic preservation, lateral view (scale bar equals 10 mm). (D, E) Peplosmilia latona (Felix, 1903) (RGM.29036, leg. J.H.F. Umbgrove); lectotype of Placosmilia robusta (Umbgrove, 1925), upper Maastrichtian, Maastricht Formation, Meerssen Member inferred, Sint-Pietersberg area; mouldic preservation (scale bar equals 10 mm). (F, G) Areopsammia alacca (Morren, 1828) (RGM 841362, formerly RGM 212452, ex Leloux Collection, Jx. 903), upper Maastrichtian, Maastricht Formation, upper Nekum or lower Meerssen members, western side of former ENCI Quarry; mouldic preservation, lateral view (scale bar equals 10 mm). (H, I) Montlivaltia angusticostata (Umbgrove, 1925) (RGM.29142, leg. J.H.F. Umbgrove), upper Maastrichtian, Maastricht Formation, ‘Houthemerberg, Vilt’; mouldic preservation, basal and lateral view (scale bar equals 5 mm).

Figure 8

Figure 4. Maastrichtian solitary corals from the Maastrichtian type area (the Netherlands-Belgium). (A–C) Parasmilia centralis (Mantell, 1822) (RGM 841366, formerly RGM 212465, leg. Kit Liem Oen) upper lower Maastrichtian, Gulpen Formation, Vijlen Member, CBR-Lixhe quarry; lateral, top and basal view (scale bars equal 10 (A) and 2 mm (B, C)). (D) Diploctenium cordatum (Goldfuss, 1826) (RGM.212454.a), upper Maastrichtian, Maastricht Formation, top Nekum Member, western side of former ENCI Quarry; lateral view, mouldic preservation (scale bar equals 5 mm). (E) Diploctenium pluma (Goldfuss, 1826) (RGM.29135, STA.8167, leg. Thierens, 1857), upper Maastrichtian, Maastricht Formation, Meerssen Member inferred, Sint-Pietersberg area; lateral view, mouldic preservation (scale bar equals 2 mm). (F) Cunnolites cancellata (Goldfuss, 1826) (RGM 841354, formerly RGM 212454.b, ex Leloux Collection, Jx 1022), upper Maastrichtian, Maastricht Formation, top Nekum Member Member to base of Meerssen Member, Maastricht (former ENCI Quarry); top view, mouldic preservation (scale bar equals 10 mm). (G) Cunnolites cancellata (Goldfuss, 1826) (RGM.33844), upper Maastrichtian, Maastricht Formation, Sint-Pietersberg area; mouldic preservation (scale bar equals 10 mm).

Figure 9

Figure 5. Maastrichtian colonial scleractinians from localities in the type area of the Maastrichtian Stage (the Netherlands-Belgium). (A) Actinastrea goldfussi (d’Orbigny, 1850) (RGM.841363, formerly RGM.212459, ex Leloux Collection, Jx.2120), upper Maastrichtian, Maastricht Formation, Meerssen Member (IVf -4/-5), Maastricht (former ENCI Quarry); mouldic preservation, corallites with predominantly 6-6 septal pattern (scale bar equals 2 mm). (B) Actinastrea goldfussi (d’Orbigny, 1850) (RGM.29070), upper Maastrichtian, Maastricht Formation, Meerssen Member inferred, Sint-Pietersberg area; recrystallised skeletal preservation (scale bar equals 2 mm). (C) Actinastrea goldfussi forma faujasi (Milne Edwards & Haime, 1857) (RGM.841360.a, formerly RGM.212458.a, ex Leloux Collection, Jx.2115), upper Maastrichtian, Maastricht Formation, Meerssen Member (IVf-4/-5), Maastricht (former ENCI quarry); corallites with predominantly 8-8 septal pattern, basal view, mouldic preservation (scale bar equals 2 mm). (D) Aplosastrea geminata (Goldfuss, 1826), lectotype (IPB GOLDFUSS 233a) designated by Löser (2011); Sint-Pietersberg area, Maastricht. Recrystallised skeletal or cast preservation (scale bar equals 5 mm). (E) Columactinastraea fallax (Umbgrove, 1925), lectotype (RGM.29074), Maastricht Formation, South Limburg; mouldic preservation (scale bar equals 2 mm). (F, G) Columnactinastrea anthonii (Leloux, 2003), holotype (RGM.216001, ex Leloux Collection), upper Maastrichtian, Maastricht Formation, Meerssen Member, basal IVf-4, former ENCI Quarry; mouldic preservation (scale bar equals 2 mm); recrystallised skeletal preservation (scale bar equals 2 mm). (H) ?Isastrea angulosa (Goldfuss, 1826) (THDN.2438, now at Naturalis, Leiden), upper Maastrichtian, Maastricht Formation, southern Limburg; mouldic preservation (scale bar equals 5 mm).

Figure 10

Figure 6. Maastrichtian colonial scleractinians from localities in the type area of the Maastrichtian Stage (the Netherlands-Belgium). (A) Montipora cretacea (Umbgrove, 1925), holotype (RGM.29072), upper Maastrichtian, Maastricht Formation, Meerssen Member inferred, Maastricht area, mouldic preservation (scale bar equals 2 mm). (B) Neocoenia (Placocaeniopsis) rotula (Goldfuss, 1826) (RGM.841361, formerly RGM.212455, ex Leloux Collection, Jx.1188), upper Maastrichtian, Maastricht Formation, Meerssen Member (IVf-3/-4), former ENCI Quarry; mouldic preservation, basal view (scale bar equals 5 mm). (C) Pleurocora arachnoides (Walch, 1775) forma minor (Quenstedt, 1881) (RGM.72658, leg. J.H.F. Umbgrove), upper Maastrichtian, Maastricht Formation, Meerssen Member inferred, southern Limburg; mouldic preservation (scale bar equals 2 mm). (D) Pleurocora arachnoides (Walch, 1775) (RGM.76612, leg. J.H.F. Umbgrove), upper Maastrichtian, Maastricht Formation, Meerssen Member inferred, southern Limburg ove; mouldic preservation (scale bar equals 2 mm). (E) Pleurocora arachnoides (Walch, 1775) forma conica (Umbgrove), lectotype (RGM.29037), upper Maastrichtian, Maastricht Formation, Meerssen Member inferred, Maastricht area; mouldic preservation (scale bar equals 2 mm). (F) Heliastrea francqana H. (Milne Edwards & Haime, 1857), grouped herein with Placocoenia macrophthalma (RGM.841352, formerly RGM.212451, ex Leloux Collection, Jx.2144), upper Maastrichtian, Maastricht Formation, Meerssen Member (IVf-4/-5), former ENCI Quarry; mouldic preservation (scale bar equals 10 mm). (G) Placocoenia macrophthalma (Goldfuss, 1826) (RGM 29044, probably Staring Collection no. 14198), southern Limburg; mouldic preservation (scale bar equals 10 mm). (H) Baryphyllia maxima (Umbgrove, 1925), holotype; RGM.29030, ‘Maastricht’; mouldic preservation (scale bar equals 10 mm).

Figure 11

Figure 7. Maastrichtian colonial scleractinians from localities in the type area of the Maastrichtian Stage (the Netherlands-Belgium). (A) Placocoenia macrophthalma (Goldfuss, 1826); NHMM K.552, Blom Quarry, Meerssen Member IVf-3 to IVf-5, Maastricht Formation, upper Maastrichtian; mouldic preservation (scale bar equals 2 mm). (B) Ellipsocoenia conferta (Umbgrove, 1925), holotype; RGM.29039, ‘Maastricht’, Maastricht Formation; mouldic preservation (scale bar equals 2 mm). (C) Ellipsocoenia conferta (Umbgrove, 1925), formerly Favia maastrichtensis (Umbgrove, 1925); Collection Landbouwhogeschool Wageningen no. 1227, now at Naturalis, Leiden; Keerderberg, southern Limburg; mouldic preservation (scale bar equals 5 mm). (D, E) Favia planissima (Umbgrove, 1925), holotype, subjective junior synonym of Dictuophyllia reticulata (Goldfuss, 1826) (RGM.20940), upper Maastrichtian, Maastricht Formation, Meerssen Member inferred, Sint-Pietersberg area; mouldic preservation (scale bar equals 10 mm) and detail (E, scale bar equals 2 mm). (F, G) Meandrophyllia velamentosa (Goldfuss, 1826), formerly Meandrophyllia gyrosa (Goldfuss, 1825) (RGM.29063), upper Maastrichtian, Maastricht Formation, Meerssen Member inferred, Sint-Pietersberg area; mouldic preservation; overview and detail, respectively (scale bars equals 5 and 2 mm, respectively).

Figure 12

Figure 8. Maastrichtian colonial scleractinians from localities in the type area of the Maastrichtian Stage (the Netherlands-Belgium). (A) Aspidastraea clathrata (Goldfuss, 1826) (RGM.29101), upper Maastrichtian, Maastricht Formation, southern Limburg; mouldic preservation (scale bar equals 10 mm). (B) Dimorphastrea solida (Umbgrove, 1925) (RGM.841365, formerly RGM.212457, ex Leloux Collection, Jx. 1646), upper Maastrichtian, Meerssen Member (IVf-4/-5) former ENCI Quarry; mouldic preservation (scale bar equals 5 mm). (C, D) Synastrea geometrica (Goldfuss, 1826) (RGM.14054), upper Maastrichtian, Maastricht Formation, Meerssen Member inferred, Sint-Pietersberg area; mouldic preservation, overview and detail, respectively (scale bar equals 10 and 2 mm, respectively). (E, F) Morphastrea escharoides (Goldfuss, 1826) (RGM.33826), upper Maastrichtian, Maastricht Formation, Meerssen Member inferred, Sint-Pietersberg area; mouldic preservation (scale bar equals 10 and 2 mm, respectively). (G, H) Fungiastraea flexuosa (Goldfuss, 1826) (RGM.76625, leg. J.H.F Umbgrove, December 8, 1918), upper Maastrichtian, Maastricht Formation, Meerssen Member inferred, Sint-Pietersberg area (Lichtenberg); mouldic preservation (scale bar equals 2 and 10 mm, respectively). (I, J) Meandrophyllia velamentosa (Goldfuss, 1826) (RGM.29050), upper Maastrichtian, Maastricht Formation, Meerssen Member inferred, Sint-Pietersberg area; mouldic preservation (scale bar equals 10 and 2 mm, respectively).

Figure 13

Figure 9. Maastrichtian colonial scleractinians from localities in the type area of the Maastrichtian Stage (the Netherlands-Belgium). (A) Heterocoenia grandis (Reuss, 1854) (RGM.841350, formerly RGM.212448), upper Maastrichtian, Maastricht Formation, Meerssen Member, former ENCI Quarry, Meerssen Member, Maastricht Formation, upper Maastrichtian; mouldic preservation (scale bar equals 10 mm). (B) Heterocoenia gracilis (Quenstedt, 1881) (RGM.841358, formerly RGM.212453, ex Leloux Collection, Jx.1122), upper Maastrichtian, Maastricht Formation, Meerssen Member (IVf-4\-5), former ENCI Quarry; mouldic preservation (scale bar equals 10 mm). (C, D) Heterocoenia grandis (Reuss, 1854) (RGM.841364, formerly RGM.212450), upper Maastrichtian, Maastricht Formation, Meerssen Member (IVf-4), former ENCI Quarry; mouldic preservation, lateral view (scale bar equals 5 mm) and basal view (scale bar equals 2 mm). (E) Heterocoenia gracilis (Quenstedt, 1881) (RGM 841351, formerly RGM.212456), upper Maastrichtian, Maastricht Formation, Meerssen Member (IVf-3/-4), former ENCI Quarry; mouldic preservation (scale bar equals 10 mm). (F) Heterocoenia grandis (Reuss, 1854) with bioerosional trace fossil (NHMM K 548), upper Maastrichtian, Maastricht Formation, Meerssen Member, southern Limburg; basal view, mouldic preservation (scale bar equals 5 mm). (G) Heterocoenia? sp. (sensu Goldfuss, 1826), cf. ‘Bacillastraea’ sensu Umbgrove (1925, pl. 11, Fig. 22) (NHMM JJ 11287), upper Maastrichtian, Maastricht Formation, Meerssen Member (IVf-4), former ENCI Quarry; lateral and basal view of ‘corallite’, mouldic preservation (scale bar equals 10 mm).