Published online by Cambridge University Press: 01 April 2016
The chemical and mineralogical composition of rattlestones found near the main Dutch rivers has been studied by Mössbauer spectroscopy, INAA and XRD. Rattlestones are concretions of iron, formed in an environment of lateral iron accumulation, under the influence of periodical oxidation, around a fine core of ferruginous sediments, mainly clay and sand. The core has shrunk and detached itself from the mantle around it. 57Fe Mössbauer spectroscopy was applied to identify the iron oxides, among which goethite is predominant. The goethite crystallinity was investigated by measuring its magnetic properties and its crystallinity, which is poorest at the outer side of the stone. The latter is confirmed by the broadening of the different X-ray reflections. In addition, illite and vermiculite were identified by XRD; these clay minerals were found mainly in the core.
The elemental composition was determined by INAA. The iron content in the mantle is about 50% by weight and gradually decreases outwards, while the core contains 2–15% Fe by weight. Differences between rattlestones from the Middle Pleistocene East of the Meuse river and those from the Late Pleistocene North of it are the absence of lepidocrocite and a richer mineralogy in the former.
It is concluded that the rattlestones are formed around a fine clayey core. Groundwater supplied the iron and other (trace) elements for the genesis. It is unlikely that rattlestones are the result of oxidation of siderite.