Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T09:02:51.487Z Has data issue: false hasContentIssue false

Comparing different shallow geophysical methods in a tidal estuary, Verdronken Land van Saeftinge, Western Scheldt, the Netherlands

Published online by Cambridge University Press:  01 April 2016

T. Missiaen*
Affiliation:
Dept. of Geotechnology, Delft University of Technology, Mijnbouwstraat 120, 2628 RX Delft, the Netherlands. Renard Centre of Marine Geology, University of Gent, Krijgslaan 281-S8, 9000 Gent, Belgium.
E. Slob
Affiliation:
Dept. of Geotechnology, Delft University of Technology, Mijnbouwstraat 120, 2628 RX Delft, the Netherlands.
M.E. Donselaar
Affiliation:
Dept. of Geotechnology, Delft University of Technology, Mijnbouwstraat 120, 2628 RX Delft, the Netherlands.
*
*Corresponding author. Email:[email protected]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In order to validate existing models of sedimentation in active sedimentary environments, detailed stratigraphic information is indispensable. Near-surface geophysical methods provide a means to acquire high-resolution images of the stratigraphic succession in the shallow subsurface. Land-based and marine methods have been tested in the Verdronken Land van Saeftinge. This intertidal flat area is cut by numerous tidal gullies, and high tidal amplitudes enable the application of different techniques at various water levels. Data acquisition focused on the upper 10 – 20 m of the active sediment bodies. Applied techniques include high-resolution seismic acquisition, geo-electrical methods (DC resistivity), electromagnetic techniques, CPT, and manual drilling. In general the acoustic methods allowed more reliable and detailed interpretation of the sedimentary structures than the electric/electromagnetic methods. The latter suffered from the effect of tidal action and salt-water intrusion, and their application on land proved very strenuous. CPT and shallow cores provided valuable ground-truth information. The results clearly indicate that no single technique can provide all the answers. Only an integrated use of (complementary) methods will allow getting a better grip on the sedimentary architecture and preservation potential in active estuarine sedimentary environments.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2008

References

Allen, J.R.L., 1982. Mud drapes in sand wave deposits: a physical model with application to the Folkestone Beds (early Cretaceous, southeast England). Philosophical Transactions of the Royal Society of London, A 306: 291345.Google Scholar
Baker, G.S., Schmeissner, C. & Steeples, D.W., 1999. Seismic reflections from depths of less than 2 meters. Geophysical Research Letters 26(2): 279282.Google Scholar
Comas, X., Slater, L. & Reeve, A., 2004. Geophysical evidence fot peat basin morphology and stratigraphic controls on vegetation observed in a Northern Peatland. Journal of Hydrology 295: 173184.Google Scholar
De Brouwer, J., Crosato, A., Dankers, N., van Duin, W., Herman, P.M.J., Van Raaphorst, W., Stive, M.J.F., Talmon, A.M., Verbeek, H., De Vries, M.B., Van der Wegen, M. & Winterwerp, J.C., 2001. Eco-moiphodynamic processes in the Rhine-Meuse-Scheldt delta and the Dutch Wadden Sea. Delft Hydraulics report Z2817: 93 pp.Google Scholar
De Gans, W. & Van Gijssel, K., 1996. The Late Weichselian morphology of the Netherlands and its influence on the Holocene coastal development. In: Beets, D.J., Fischer, M.M. & Na Gans, W. (eds): Coastal studies on the Holocene of the Netherlands. Mededelingen Rijks Geologische Dienst N.S. 57: 1125.Google Scholar
De Kraker, A.M.J., 1997. Landschap uit Balans. De invloed van de natuur, de economie en de politiek op de ontwikkeling van het landschap van de Vier Ambachten en het Land van Saeftinge tussen 1488 en 1609 (in Dutch). Uitgevery Matrijs, Utrecht: 464 pp.Google Scholar
Donselaar, M.E. & Geel, C.R., 2007. Facies architecture of heterolithic tidal deposits: the Holocene Holland Tidal Basin. Netherlands Journal of Geosciences 86; 389402.Google Scholar
Ebbing, J.H.J. & Laban, C., 1996. Geological history of the area off Walcheren and Zeeuws-Vlaanderen (southwestern Netherlands) since the start of the Eemian. In: Beets, D.J., Fischer, M.M. & De Gans, W. (eds): Coastal studies on the Holocene of the Netherlands. Mededelingen Rijks Geologische Dienst N.S. 57: 251268.Google Scholar
Chose, R., 2003. High-frequency shear-wave reflections to monitor lateral variations in soil, supplementing downhole geotechnical tests. In: Saveur, J. (ed.): Proceedings of ITA World tunneling.Google Scholar
Ghose, R., Nijhof, V., Brouwer, J., Matsubara, Y., Kaida, Y. & Takahahi, T.. 1997. Shallow to very shallow, high-resolution reflection seismic using a portable vibrator system. Geophysics 63(4): 12951309.CrossRefGoogle Scholar
Jongerius, P. & Helbig, K., 1988. Onshore high-resolution seismic profiling applied to sedimentology. Geophysics 53(10): 12761283.CrossRefGoogle Scholar
Kogan, I. & Paull, C.K., 2004. Coastal seismic wipe-outs - distribution controlled by pore waterc salinity. Marine Geology 217: 161175.Google Scholar
Lunne, T., Robertson, P.K. & Powell, J., 1997, Cone Penetration Testing in Geotechnical Practice, E & FN Sponn, London: 1312.Google Scholar
Maillet, G.M., Rizzo, E., Revil, A. & Vella, C., 2005. High resolution electrical tomography (ERT) in a transition zone environment: Application for detailed internal architecture and infilling processes study of a Rhone River paleochannel. Marine Geophysical Researches 26: 317328.CrossRefGoogle Scholar
Méndez, G., Pérez-Arliicea, M., Stouthamer, E. & Berendsen, H.. 2003. The TESS-1 suction corer: a new device to extract wet, uncompacted sediments. Journal of Sedimentary Research 73: 10781081.CrossRefGoogle Scholar
Nio, S.D., Siegenthaler, C. & Yang, C.S., 1983. Megaripple crossbedding as a tool for the reconstruction of the palaeohydraulics in a Holocene subtidal environment, SW Netherlands. Geologie & Mijnbouw 62; 499510.Google Scholar
Nia, S.D. & Yang, C., 1991. Diagnostic attributes of clastic tidal deposits: a review. In: $$D.G., Smith, D.G., Reinson, G.E., Zaitlin, B.A., Rahmani, R.A. (eds): Clastic Tidal Sedimentology, Canadian Society of Petroleum Geologists Memoirs 16: 327.Google Scholar
Robb, G.B., Dix, J.D., Best, A.I., Bull, J.M., Leighton, T.G., White, P.R. & Seal, A., 2005. The cumpressional wave and physical properties of intertidal marine sediments. In: Proceedings of the 1st International Conference on Underwater Acoustic Measurements: Technologies & Results, Heraklion, Crete, Greece. Foundation for Research & Technology - Hellas: 10871092.Google Scholar
Robb, G.B., Best, A.I., Dix, J.D., Bull, J.M., Leighton, T.G. & White, P.R., 2006. The frequency dependence of compressional wave velocity and attenuation coefficient of intertidal marine sediments. Journal of the Acoustical Society of America 120(5): 25262537.Google Scholar
Slater, L. & Reeve, A., 2002. Investigating peatland stratigraphy and hydrogeology using integrated electrical geophysics. Geophysics 67(2): 365378.CrossRefGoogle Scholar
Van Damme, S., Struyf, E., Maris, T., Ysebaert, T., Dehairs, F., Tackx, M., Heip, C. & Meire, F., 2005. Spatial and temporal pattens of water quality along the estuarine salinity gradient of the Scheldt estuary (Belgium and the Netherlands): results of an integrated monitoring approach. Hydrobiologia 540: 2945.CrossRefGoogle Scholar
Van de Meene, E.A., Van der Staay, J. & Hock, Teoh Lay, 1979. The Van der Staay suction-corer - a simple apparatus for drilling in sand below groundwater table. Rijks Geologische Dienst, Haarlem: 115.Google Scholar
Van der Spek, A.J.F., 1997. Tidal asymmetry and long-term evolution of Holocene tidal basins in the Netherlands: simutation of palaeo-tides in the Schelde estuary. Marine Geology 141: 7190.CrossRefGoogle Scholar
Verlaan, P.A.J., Danze, M. & Kuik, P., 1997, Marine vs Fluvial Suspended Matter in the Scheldt Estuary. Estuarine, Coastal and Shelf Science 46(6): 873883.Google Scholar
Vos, P.C. & van Heeringen, R.M., 1997. Holocene Geology and occupation history of the Province of Zeeland. In: Fisher, M.M. (ed.): Holocene evolution of ZeeLand, TN0 59: 5109.Google Scholar
Weerts, H.J.T., Cleveringa, P., Ebbing, J.H.J., Lang, F.D. & Westerhoff, W.E., 2000. De lithografische indeling van Nederland. Formaties uit het Tertiair en kwartair. TNO-NITG rapport 00–95-A. TNO-NTTG, Utrecht: 38 pp.Google Scholar