Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T11:58:41.577Z Has data issue: false hasContentIssue false

Changing depositional environments in the Colombian Fúquene Basin at submillennial time-scales during 284-27 ka from unmixed grain-size distributions and aquatic pollen

Published online by Cambridge University Press:  24 March 2014

M. Vriend
Affiliation:
Institute for Biodiversity and Ecosystems Dynamics (IBED), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
M.H.M. Groot
Affiliation:
Institute for Biodiversity and Ecosystems Dynamics (IBED), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
H. Hooghiemstra*
Affiliation:
Institute for Biodiversity and Ecosystems Dynamics (IBED), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
R.G. Bogotá-Angel
Affiliation:
Institute for Biodiversity and Ecosystems Dynamics (IBED), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands Facultad del Medio Ambiente y Recursos Naturales. Universidad Distrital Francisco José de Caldas, Bogotá, Colombia
J.C. Berrio
Affiliation:
Institute for Biodiversity and Ecosystems Dynamics (IBED), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In a ~60 m long record reflecting the period from 284 ka to 27 ka we analysed grain size distributions (GSD), organic carbon content, and aquatic pollen assemblages at 1-cm increments. The 4768-points time series show with ~60 yr resolution the dynamic history of Lake Fúquene (2540 m alt., 4° N lat.) of the northern Andes during two full interglacial-glacial cycles. GSD show proportions of clay, fine silt, coarse silt, and sand evidencing the location of the sediment source (proximal vs distal) in relation to the drilling site, and available energy to transport sediments in the catchment area. Loss-on-ignition (LOI) values reflect estimates of the abundance of organic matter (OM) in the sediments. Aquatic pollen were grouped into assemblages characteristic of deep water, shallow water, swamp, and wet lake shore environments, reflecting a hydrological gradient sensitive for lake level changes.

The End-Member Modelling Algorithm (EMMA) showed that 4 end-members (EMs) explain an optimal proportion (70%) of the observed variation. EMMA is able to unmix GSD of lacustrine sediments in a genetically meaningful way allowing EMs to be interpreted in past depositional and environmental settings. Most unexplained variability is located in the fraction of coarse sediment. OM content was estimated on the basis of LOI data and formed a fifth EM that mainly indicates presence of peat. Changes concur with submillennial-scale variability established in other proxies from this record (Groot et al., 2011). Periods with distinct sediment compositions are 284-243 ka (mainly MIS 8), 243-201 ka (mainly MIS 7), 201-179 ka (mainly MIS 7/6 transition), 179-133 ka (mainly MIS 6), 133-111 ka, (mainly MIS 5e) 111-87 ka (mainly MIS 5d-5b), 87-79 ka (mainly MIS 5a), 79-62 ka (mainly MIS 4), and 62-27 ka (MIS 3) showing sedimentological regimes are climate driven.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2011

References

Battarbee, R.W., 1986. Diatom analysis. In: Berglund, B.E. (ed.): Handbook of Holocene palaeoecology and palaeohydrology. Wiley, New York: 527570.Google Scholar
Beaudoin, A., 2003. A comparison of two methods for estimating the organic content of sediments. Journal of Paleolimnology 29: 387390.CrossRefGoogle Scholar
Bogotá-Angel, R.G., Gaviria, S., Rincón-Martínez, D., Sarmiento, G., Hooghiemstra, H., Berrio, J.C., Groot, M.H.M., Verstraten, J.M. & Jansen, B., 2011a. Geochemical basin dynamics related to its sedimentary, vegtational and climate histories: a case study from the Fúquene Basin, northern Colombian Andes. In: Bogotá-Angel, R.G.: Pleistocene centennial-scale vegetational, environmental, and climatic change in the Colombian Andes. PhD thesis, University of Amsterdam: 105126.Google Scholar
Bogotá-Angel, R.G., Groot, M.H.M., Hooghiemstra, H., Lourens, L.J., Van der Linden, M. & Berrio, J.C., 2011b. Rapid climate change from North Andean Lake Fúquene pollen records driven by obliquity: implications for a basin-wide biostratigraphic zonation. Quaternary Science Reviews 30: 33213337.CrossRefGoogle Scholar
Bogotá-Angel, R.G., Hooghiemstra, H. & Berrio, J.C., 2011c. An ultra-high resolution multi-proxy record from Lake Fúquene (Colombia); orbital to submillennial-scale dynamics of montane vegetation, climate, lake-level changes and sedimentary environments, I: period 284-130 kyr before present. In: Bogotá-Angel, R.G.: Pleistocene centennial-scale vegetational, environmental, and climatic change in the Colombian Andes. PhD thesis, University of Amsterdam: 4997.Google Scholar
Burrough, S.L., Thomas, D.S.G., Shaw, P.A. & Bailey, R.M., 2007. Multiphase Quaternary highstands in Lake Ngami, Kalahari, northern Botswana. Palaeogeography Palaeoclimatology Palaeoecology 253: 280299.CrossRefGoogle Scholar
CAR, 2000. Fúquene; el lecho de la zorra. Corporación Autónoma Regional de Cundinamarca (Bogotá), Colombia, 189 pp.Google Scholar
CAR, 2002. Atlas ambiental CAR 2001 (1st ed. 2002). Corporación Autónoma Regional de Cundinamarca, Bogotá, Colombia, 175 pp.Google Scholar
Chaparro, B., 2003. Reseña de la vegetación en los humedales de la Sabana de Bogotá. In: Conservation International – Colombia, Los humedales de Bogotá y la Sabana, Vol. 1. Panamericana (Bogotá), Colombia: 7189.Google Scholar
Chapron, E., Juvigné, E., Mulsow, S., Ariztegui, D., Magand, O., Bertrand, S., Pino, M. & Chapron, O., 2007. Recent clastic sedimentation processes in Lake Puyehue (Chilean Lake District, 40.5° S). Sedimentary Geology 201: 365385.CrossRefGoogle Scholar
Cleef, A.M., 1981. The vegetation of the paramos of the Colombian Cordillera Oriental. Dissertationes Botanicae 61. J. Cramer (Vaduz), 320 pp.Google Scholar
Cleef, A.M. & Hooghiemstra, H., 1984. Present vegetation of the area of the high plain of Bogota. In: Hooghiemstra, H. (ed.): Vegetational and climatic history of the high plain of Bogota, Colombia. Dissertationes Botanicae 79. J. Cramer, (Vaduz): 4266.Google Scholar
Cortés, S.P. & Rangel-Ch., , J.O., , 2000. Los relictios de vegetación en la Sabana de Bogotá. In: Aguirre, J. (ed.): Memorias del Primer Congreso Colombiano de Botánica (Bogotá), Colombia, versión en CD-Rom.Google Scholar
Cuatrecasas, J., 1958. Aspectos de la vegetación natural de Colombia. Revista de la Academia Colombiana Ciencias Exactas Fisicas y Naturales 10 (40): 221264.Google Scholar
Feagri, K. & Iversen, J., 1989. Text book of pollen analysis. 4th ed. Wiley (Chichester).Google Scholar
Gill, D.Shomrony, A. & Fligelman, H., 1993. Numerical zonation of log suites and log facies recognition by multivariate clustering. The American Association of Petroleum Geologist Bulletin 77: 17811791.Google Scholar
Grabandt, R.A.J., 1980. Pollen rain in relation to arboreal vegetation in the Colombian Cordillera Oriental. Review of Palaeobotany and Palynology 29: 65147.CrossRefGoogle Scholar
Grimm, E.C., 1987. CONISS: A Fortran 77 program for stratigraphically constrained cluster analysis by the method of the incremental sum of squares. Computer and Geosciences 13: 1335.CrossRefGoogle Scholar
Groot, M.H.M., Hooghiemstra, H., Berrio, J.C., Giraldo-P, C. & Vriend, M., in review. An ultra-high resolution multi-proxy record from Lake Fúquene (Colombia); orbital to submillennial-scale dynamics of montane vegetation, climate, lake-level changes and sedimentary environments, II: period 130-27 kyr before present.Google Scholar
Groot, M.H.M., Bogotá, R.G., Lourens, L.J., Hooghiemstra, H., Vriend, M., Berrio, J.C., Tuenter, E., Van der Plicht, J., Van Geel, B., Ziegler, M., Weber, S.L. & Fúquene project Members, 2011. Ultra-high-resolution pollen record from the northern Andes reveals rapid shifts in montane climates within the last two glacial cycles. Climate of the Past 7: 299316.CrossRefGoogle Scholar
Grubb, P.J., 1974. Factors controlling the distribution of forest-types on tropical mountains. In: Flenley, J.R. (ed.): Altitudinal zonation in Malesia. Transactions Third Aberdeen-Hull Symposium on Malesian Ecology, University of Hull, Dept. of Geogr., Miscellaneous Series No. 16: 1345.Google Scholar
Helmens, K.F., Rutter, N.W. & Kuhry, P., 1997. Glacier fluctuations in the Eastern Andes of Colombia (South America) during the last 45,000 radiocarbon years. Quaternary International 38/39: 3948.CrossRefGoogle Scholar
Holz, C., Stuut, J.B.W. & Henrich, R., 2004. Terrigenous sedimentation processes along the continental margin of NW Africa: implications from grain-size analysis of seabed sediments. Sedimentology 51: 11451154.CrossRefGoogle Scholar
Holz, C., Stuut, J.B.W., Rüdiger, H. & Meggers, H., 2007. Variability in terrigenous sedimentation processes off northwest Africa and its relation to climate changes: Inferences from grain-size distributions of a Holocene marine sediment record. Sedimentary Geology 202: 499508.CrossRefGoogle Scholar
Hooghiemstra, H., 1984. Vegetational and climatic history of the high plain of Bogota, Colombia. Dissertationes Botanicae 79. J. Cramer, Vaduz, 368 pp.Google Scholar
Hooghiemstra, H., Wijninga, V.M. & Cleef, A.M., 2006. The paleobotanical record of Colombia: implications for biogeography and biodiversity. Annals Missouri Botanical Garden 93: 297324.CrossRefGoogle Scholar
IGAC, 2003. Atlas de Colombia; 5th edition 2002. Instituto Geografico Agustin Codazzi, Bogota D.E., Colombia.Google Scholar
Imbrie, J., Hays, J.D., Martinson, D.G., McIntyre, A., Mix, A.C., Morley, J.J., Pisias, N.G., Prell, W.L. & Shackleton, N.J., 1984. The orbital theory of Pleistocene climate: support from a revised chronology of the marine ∂180 record. In: Berger, A., Imbrie, J., Hays, J., Kukla, G. & Saltzman, B. (eds): Milankovitch and climate, Part 1. NATO ASI Series C 126. Reidel (Dordrecht), the Netherlands: 269305.Google Scholar
Ingeominas, 1991. Mapa geológico de Colombia. Instituto de Investigaciones en Geociencias, Minería y Química (Bogotá) Colombia.Google Scholar
Jansen, J.H.F., Van der Gaast, S.J., Koster, B. & Vaars, A.J., 1998. COTEX, a shipboard XRF-scanner for element analysis in split sediment cores. Marine Geology 151: 143153.CrossRefGoogle Scholar
Julià, R. & Luque, J.A., 2006. Climatic changes vs. catastrophic events in lacustrine systems: A geochemical approach. Quaternary International 158: 162171.CrossRefGoogle Scholar
Konert, M. & Vandenberghe, J., 1997. Comparison of laser grain size analysis with pipette and sieve analysis: a solution for the underestimation of the clay fraction. Sedimentology 44: 523535.CrossRefGoogle Scholar
Lisiecki, E.L. & Raymo, M.E., 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic ∂180 records. Paleoceanography 20, PA1003.Google Scholar
Mommersteeg, H., 1998. Vegetation development and cyclic and abrupt climatic change during the Late Quaternary. PhD thesis, University of Amsterdam, 191 pp.Google Scholar
Prentice, I.C., 1985. Pollen representation, source area, and basin size: toward a unified theory of pollen analysis. Quaternary Research 23: 7686.CrossRefGoogle Scholar
Prins, M.A., Vriend, M., 2007. Glacial and interglacial eolian dust dispersal patterns across the Chinese Loess Plateau inferred from decomposed loess grain-size records. Geochemistry Geophysics Geosystems 8.Q07/Q05.doi10.1029/2006GC001563.Google Scholar
Prins, M.A. & Weltje, G.J., 1999a, End-member modelling of grain-size distributions of sediment mixtures. In: Prins, M.A.: Pelagic, hemipelagic and turbidite deposition in the Arabian Sea during the late Quaternary: Unravelling the signals of aeolian and fluvial sediment supply as functions of tectonics, sea-level and climate change by means of end-member modelling of siliciclastic grain-size distributions. Geologica Ultraiectina 168, PhD thesis, University of Utrecht: 4768.Google Scholar
Prins, M.A. & Weltje, G.J., 1999b, End-member modeling of siliciclastic grain-size distributions: The late Quaternary record of aeolian and fluvial sediment supply to the Arabian Sea and its paleoclimatic significance. In: Harbaugh, J., et al. (eds): Numerical experiments in stratigraphy: Recent advances in stratigraphic and sedimentologic computer simulations, SEPM (Society for Sedimentary Geology) Special Publication 62: 91111.Google Scholar
Prins, M.A., Postma, G. & Weltje, G.J., 2000. Controls on terrigenous sediment supply to the Arabian Sea during the late Quaternary: the Makran continental slope. Marine Geology 169: 351371.CrossRefGoogle Scholar
Prins, M.A., Bouwer, L.M., Beets, C.J., Troelstra, S.R., Weltje, G.J., Kruk, R.W., Kuijpers, A. & Vroon, P.Z., 2002. Ocean circulation and iceberg discharge in the glacial North Atlantic: inferences from unmixing of sediment distributions. Geology 30: 555558.2.0.CO;2>CrossRefGoogle Scholar
Prins, M.A., Vriend, M., Nugteren, G., Vandenberghe, J., Lu, H., Zheng, H. & Weltje, G.J, 2007. Late Quaternary aeolian dust input variability on the Chinese Loess Plateau: inferences from unmixing of loess grain-size records. Quaternary Science Reviews 26: 242254.CrossRefGoogle Scholar
Rangel-Ch., , J.O., , 2003. El antiguo lago de la Sabana de Bogotá su vegetación y su flora en el tiempo. In: Los humedales de Bogotá y la sabana. Empresa de Acueducto, Agua y Alcantarillado de Bogotá, Conservación Internacional: 5370.Google Scholar
Rangel, Ch., J.O., & Aguirre-C., , J., , 1983. Comunidades acuáticas altoandinas I. Vegetación sumergida y de ribera en el Lago de Tota, Boyacá, Colombia. Caldasia 13: 719742.Google Scholar
Rangel, Ch., J.O., & Aguirre-C., , J., , 1986. Estudios ecológicos en la Cordillera Oriental Colombiana, III. La vegetación de la cuenca del Lago de Tota (Boyacá). Caldasia 15: 263311.Google Scholar
Riezebos, P.A., 1978. Petrographic aspects of a sequence of Quaternary volcanic ashes from the Laguna de Fúquene area, Colombia, and their stratigraphic significance. Quaternary Research 10: 401424.CrossRefGoogle Scholar
Santos-Molano, E. & Guerra-C., , C., , 2000. Fúquene; el lecho de la zorra. Corporación Autónoma Regional de Cundinamarca (CAR) (Bogotá), Colombia, 189 pp.Google Scholar
Sarmiento, G., Gaviria, S., Hooghiemstra, H., Berrio, J.C. & Van der Hammen, T., 2008. Landscape evolution and origin of Lake Fúquene (Colombia): tectonics, erosion and sedimentation processes during the Pleistocene. Geomorphology 100, 563575.CrossRefGoogle Scholar
Stuut, J.B.W., Prins, M.A., Schneider, R.S., Weltje, G.J., Jansen, J.H.F. & Postma, G., 2002. A 300 kyr record of aridity and wind strength in southwestern Africa: evidence from grain-size distributions of sediments on Walvis Ridge, SE Atlantic. Marine Geology 180: 221233.CrossRefGoogle Scholar
Stuut, J-B.W. & Lamy, F., 2004. Climate variability at the southern boundaries of the Namib (southwestern Africa) and Atacama (northern Chile) coastal deserts during the last 120,000 yr. Quaternary Research 62: 301309.CrossRefGoogle Scholar
Sugita, S., 1993. A model of pollen source area for an entire lake surface. Quaternary Research 39: 239244.CrossRefGoogle Scholar
Torres, V., Vandenberghe, J. & Hooghiemstra, H., 2005. An environmental reconstruction of the sediment infill of the Bogota basin (Colombia) during the last 3 million years from abiotic and biotic proxies. Palaeogeography Palaeoclimatology Palaeoecology 226: 127148.CrossRefGoogle Scholar
Torres, V., 2006. Pliocene-Pleistocene evolution of flora, vegetation and climate: a palynological study of a 586-m core from the Bogotá Basin, Colombia. Unpublished PhD thesis, Univ. Amsterdam, the, 181 pp.Google Scholar
Van der Hammen, T., 1974. The Pleistocene changes of vegetation and climate in tropical South America. Journal of Biogeography 1: 326.CrossRefGoogle Scholar
Van der Hammen, T. & González, E., 1960. Upper Pleistocene and Holocene climate and vegetation of the Sabana de Bogota (Colombia, South America). Leidse Geologische Mededelingen 25: 126315.Google Scholar
Van der Hammen, T. & Hooghiemstra, H., 2003. Interglacial-glacial Fúquene-3 pollen record from Colombia: an Eemian to Holocene climate record. Global and Planetary Change 36: 181199.CrossRefGoogle Scholar
Van Geel, B. & Van der Hammen, T., 1973. Upper Quaternary vegetational and climatic sequence of the Fúquene area (Eastern Cordillera, Colombia). Palaeogeography Palaeoclimatology Palaeoecology 14: 992.CrossRefGoogle Scholar
Van't Veer, R. & Hooghiemstra, H., 2000. Montane forest evolution during the last 650 000 yr in Colombia: a multivariate apptoach based on pollen record Funza-1. Journal of Quaternary Science 15: 329346.3.0.CO;2-3>CrossRefGoogle Scholar
Vriend, M. & Prins, M.A., 2005. Calibration of modelled mixing patterns in loess grain-size distributions: an example from the north-eastern margin of the Tibetan Plateau, China. Sedimentology 52: 13611374.CrossRefGoogle Scholar
Vriend, M., Prins, M.A., Buylaert, J.-P., Vandenberghe, J. & Lu, H., 2011. Contrasting dust supply patterns across the north-western Chinese Loess Plateau during the last glacial-interglacial cycle. Quaternary International, doi: 10.1016/j.quaint.2010.11.009.Google Scholar
Weltje, G.J., 1997. End-member modelling of compositional data: numerical-statistical algorithms for solving the explicit mixing problem. Journal of Mathematical Geology 29: 503549.CrossRefGoogle Scholar
Weltje, G.J. & Prins, M.A., 2003. Muddled or mixed? Inferring paleoclimate from size distributions of deep-sea clastics. Sedimentary Geology 162: 3962.CrossRefGoogle Scholar
Weltje, G.J. & Prins, M.A., 2007. Genetically meaningful decomposition of grain-size distributions. Sedimentary Geology 202: 409424.CrossRefGoogle Scholar
Wolin, J.A. & Duthie, H.C., 1999. Diatoms as indicators of water level change in fresh water lakes. In: Stoermer, E.F. & Smol, J.P. (eds.): The diatoms: applications for the environmental and earth sciences. Cambridge University Press (Cambridge), U.K.: 183202.CrossRefGoogle Scholar