Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-23T04:16:48.190Z Has data issue: false hasContentIssue false

Calibration of the 14C time scale: towards the complete dating range

Published online by Cambridge University Press:  01 April 2016

J. van der Plicht*
Affiliation:
Centre for Isotope Research, Radiocarbon Laboratory Groningen University, Nijenborgh 4, 9747 AG Groningen, the Netherlands; e-mail:[email protected]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Radiocarbon calibration based on dendro-chronology and U-series dated corals yield a calibration curve (INTCAL98) well into the Late Glacial, back to ca. 15,600 calendar years ago. Beyond this limit, various calibration curves are produced, mainly based on laminated sediments and various carbonates dated by U-series isotopes. Such calibration curves now cover the complete 14C dating range of about 45,000 years, but are not consistent with each other. Each calibration method (other than dendro-chronology) has its own assumptions and pitfalls. Thus far, the calibration curve obtained from Lake Suigetsu laminated sediments is the only terrestrial (atmospheric) one.

Type
Special section: PAGES Symposium, Amsterdam, 3 November 2000
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2002

References

References

Abeyratne, M., Spooner, N.A., Grün, R. & Head, J., 1997. Multidating studies of Batadomba cave, Sri Lanka. Quaternary Science Reviews 16: 243–255.CrossRefGoogle Scholar
Aldahan, A. & Possnert, G., 1998. A high resolution 10Be profile from deep sea sediment covering the last 70 ka: indication for globally synchronized environmental events. Quaternary Geochronology 17:1023–1032.Google Scholar
Barbetti, M., 1980. Geomagnetic strength over the last 50,000 years and changes in atmospheric 14C concentration: emerging trends. Radiocarbon 22: 192–199.Google Scholar
Barbetti, M. & Flude, K., 1979. Geomagnetic variation during the late Pleistocene period and changes in the radiocarbon time scale. Nature 279: 202–205.CrossRefGoogle Scholar
Bard, E., 1997. Nuclide production by cosmic rays during the last Ice Age. Science 277: 532–533.Google Scholar
Bard, E., Arnold, M., Hamelin, B., Tisnerat-Laborde, N. & Cabioch, G., 1998. Radiocarbon calibration by means of mass spectrometric 230Th/234U and 14C ages of corals: an updated database including samples from Barbados, Mururoa and Tahiti. Radiocarbon 40: 1085–1092.Google Scholar
Baumgartner, S., Beer, J., Masarik, J., Wagner, G., Meynadier, L. & Synal, H.A., 1998. Geomagnetic modulation of the 36C1 flux in the GRIP ice core. Science 279: 1330–1332.Google Scholar
Beck, W., Richards, D., Herrera, S., Calsoyas, L., Donahue, D., Edwards, L., Smart, P., Burr, G. & Jull, T., 2000. 230Th and 14C dating of speleothems from the Bahamas: implications for calibration of the Radiocarbon rimescale to 45 ka BP. Abstract, 17th International Radiocarbon Conference, Israel, june 2000.Google Scholar
Bell, W.T., 1991. Thermoluminescence dates for the Lake Mungo Aboriginal fireplaces and the implications for Radiocarbon dating. Archaeometry 33: 43–50.Google Scholar
Bischoff, J.L., Ludwig, K., Garcia, J.F., Carbonell, E., Vaquero, M., Stafford, T.W. & Jull, A.J.T., 1994. Dating of the Basal Aurignacian Sandwich at Abric Romani (Catalunya, Spain) by Radiocarbon and Uranium-series. Journal of Archaeological Science 21: 541–551.Google Scholar
Björck, S., Kromer, B., Johnsen, S., Bennike, O., Hammarlund, D., Lemdahl, G., Possnert, G., Rasmussen, T.L., Wohlfarth, B., Hammer, C.U. & Spurk, M., 1996. Synchronized terrestrial-atmospheric deglacial records around the North Atlantic. Science 274: 1155–1160.Google Scholar
Brauer, A., Endres, C., Zolitschka, B. & Negendank, J., 2000. AMS radiocarbon and varve chronology from the annually laminated sediment record of Lake Meerfelder Maar, Germany. Radiocarbon 42: 355–368.CrossRefGoogle Scholar
Bronk Ramsey, C. 1998. Probability and dating. Radiocarbon 40: 461–474.Google Scholar
Bucha, V., 1970. Influence of the earth’s magnetic field on radiocarbon dating. In: Olsson, I.U. (ed.): Radiocarbon variations and absolute chronology (Nobel Symposium 12). Almqvist & Wiksell (Stockholm): 501–512.Google Scholar
Burr, G.S., Beck, J.W., Taylor, F.W., Récy, J., Edwards, R.L., Cabioch, G., Corrège, T., Donahue, D.J. & O’Malley, J.M., 1998. A high resolution radiocarbon calibration between 11,700 and 12,400 calendar years BP derived from 230Th ages of corals from Espiritu Santo Island, Vanuatu. Radiocarbon 40: 1093–1105.Google Scholar
Castagnoli, C.G., Albrecht, A., Beer, J., Bonino, G., Shen, C. Callegari, E., Taricco, C. Ditrich-Hannen, B., Kubik, P., Suter, M. & Zhu, G.M., 1995. Evidence for enhanced 10Be deposition in Mediterranean sediments 35 kyr BP. Geophysical Research Letters 22: 707–710.CrossRefGoogle Scholar
Chappell, J. & Veeh, H.H., 1978. 230Th/234U age support of an interstadial sea level of-40 m at 30,000 yr BP. Nature 276: 602–604.CrossRefGoogle Scholar
De Vries, H., 1958. Variation in concentration of radiocarbon with time and location on earth. Koninklijke Nederlandse Akademie van Wetenschappen Proceedings series B(61): 1–9.Google Scholar
Farrand, W.R., 1994. Confrontation of geological stratigraphy and radiometrie dates from Upper Pleistocene sites in the Levant. In:.Bar-Yosef, O. & Kra, R. (eds.): Late Quaternary Chronology and Paleoclimates of the Eastern Mediterranean. The University of Arizona, Tucson: 33–53.Google Scholar
Frank, M., 2000. Comparison of cosmogenic radionuclide production and geomagnetic field intensity over the last 200,000 years. Philosophical Transactions of the Royal Society. London A358: 1089–1107.Google Scholar
Geyh, M.A. & Schlüchter, C., 1998. Calibration of the 14C time scale beyond 22,000 BP. Radiocarbon 40: 475–482.Google Scholar
Godwin, H., 1962. Half life of Radiocarbon. Nature 195: 984.CrossRefGoogle Scholar
Goslar, T.F., Hercman, H. & Pazdur, A., 2000a. Comparison of Useries and Radiocarbon dates of speleothems. Radiocarbon 42: 403–414.Google Scholar
Goslar, T.F., Arnold, M., Tisnerat-Laborde, N., Hatte, C. Paterne, M. & Ralska-Jasiewiczowa, M., 2000b. Radiocarbon calibration by means of varve versus 14C ages of terrestrial macrofossils from Lake Gosciaz and Lake Perespilno, Poland. Radiocarbon 42: 335–348 Google Scholar
Guyodo, Y. & Valet, J.P., 1996. Relative variations in geomagnetic intensity from sedimentary records: the past 200 thousand years. Earth and Planetary Science Letters 143: 23–36.Google Scholar
Hajdas, I., Ivy, S.D., Beer, J., Bonani, G., Imboden, D., Lotter, A.F., Sturm, M. & Suter, M., 1993. AMS radiocarbon dating and varve chronology of Lake Soppensee: 6000 to 12000 14C years BP. Climate Dynamics 9: 107–116.CrossRefGoogle Scholar
Hajdas, I., Zolitschka, B., Ivy-Ochs, S.D., Beer, J., Bonani, G., Leroy, S.A.G., Negendank, J.W., Ramrath, M. & Suter, M., 1995. AMS radiocarbon dating of annually laminated sediments from lake Holzmaar, Germany. Quaternary Science Reviews 14: 137–143.Google Scholar
Holmgren, K., Lauritzen, S.E. & Possnert, G., 1994. 230Th/234U and 14C dating of a Late Pleistocene stalagmite in Lobatse II cave, Botswana. Quaternary Geochronology 13: 111–119.Google Scholar
Hughen, K.A., Overpeck, J.T., Lehman, S.J., Kashgarian, M., Southon, J., Peterson, L.C., Alley, R. & Sigman, D.M., 1998a. Deglacial changes in ocean circulation from an extended radiocarbon calibration. Nature 391: 65–68.CrossRefGoogle Scholar
Hughen, K.A., Overpeck, J.T., Lehman, S.J., Kashgarian, M., Southon, J. & Peterson, L.C., 1998b. A new 14C calibration dataset for the Last Deglaciation based on marine varves. Radiocarbon 40: 483–494.Google Scholar
Huxtable, J. & Aitken, M.J., 1977. Thermoluminescent dating of Lake Mungo geomagnetic polarity excursion. Nature 265: 40–41.Google Scholar
Kitagawa, H. & Van der Plicht, J., 1998. Atmospheric radiocarbon calibration to 45,000 yr BP: Late Glacial fluctuations and cosmogenic isotope production. Science 279: 1187–1190.Google Scholar
Kitagawa, H. & Van der Plicht, J., 2000. Atmospheric radiocarbon calibration beyond 11,900 calBP from Lake Suigetsu laminated sediments. Radiocarbon 42: 369–380.Google Scholar
Kromer, B. & Spurk, M., 1998. Revision and tentative extension of the tree-ring based 14C calibration, 9,200-11,855 calBP. Radiocarbon 40: 1117–1125.Google Scholar
Libby, W.F., 1955. Radiocarbon dating. Chicago, University press, Re-issued 1965.Google Scholar
Lin, J.C., Broecker, W.S., Anderson, R.F., Hemming, S., Rubenstone, J.L. & Bonani, G., 1996. New 230Th/U and 14C ages from lake Lahontan carbonates, Nevada, USA, and a discussion of the origin of initial thorium. Geochimica Cosmochimica Acta 60: 2817–2832.Google Scholar
Lin, J.C., Broecker, W.S., Hemming, S.R., Hajdas, I., Anderson, R.F., Smith, G.I., Kelley, M. & Bonani, G., 1998. A reassessment of U-Th and 14C ages for Late Glacial high-frequency hydrological events at Searles Lake, California. Quaternary Research 49: 11–23.CrossRefGoogle Scholar
Lomitschka, M. & Mangini, A., 1999. Precise Th/U-dating of small and heavily coated samples of deep sea corals. Earth and Planetary Science Letters 170: 391–401.Google Scholar
McHargue, L.R., Damon, P.E. & Donahue, D.J., 1995. Enhanced cosmic-ray production of 10Be coincident with the Mono Lake and Laschamp geomagnetic excursions. Geophysical Research Letters 22: 659–662.Google Scholar
Mellars, P., 2001. Châtelperronian chronology and the case for the Neanderthal/modern human ‘acculturation’ in western Europe. Current Anthropology (in press)Google Scholar
Mook, W.G., 1986. Business meeting. Radiocarbon 28: 799.Google Scholar
Mook, W.G. & Streurman, H.J., 1983. Physical and chemical aspects of radiocarbon dating. PACT Publications 8: 31–55.Google Scholar
Mook, W.G. & Waterbolk, H.T., 1985. Handbook for Archaeologists, no. 3, Radiocarbon Dating. European Science Foundation, Strasbourg: 1–65.Google Scholar
Mook, W.G. & Van der Plicht, J., 1999. Reporting 14C activities and concentrations. Radiocarbon 41: 227–239.Google Scholar
Prescott, J.R. & Smith, M.A., 1993. Comparison of thermoluminescence and 14C dates as an indicator of cosmic ray intensity variations. Conference papers of the 23rd International Cosmic Ray Conference, Calgary: 838–841.Google Scholar
Raisbeck, G.M., Yiou, F., Fruneau, M., Loiseaux, J.M., Lieuvin, M., Ravel, J.C. & Lorius, C. 1987. Cosmogenic 10Be concentrations in Antarctic ice during the past 30,000 years. Nature 292: 825–826.Google Scholar
Readhead, M.L., 1988. Thermoluminescence dating study of quartz in aeolian sediments from Southeastern Australia. Quaternary Science Reviews 7: 257–264.Google Scholar
Richter, D., Waiblinger, J., Rink, W.J. & Wagner, G.A., 2000. Thermoluminescence electron spin resonance and 14C-dating of the Late Middle and Early Upper Palaeolithic site of Geissenklösterle Cave in Southern Germany. Journal of Archaeological Science 27:71–89.CrossRefGoogle Scholar
Roberts, R.G., Jones, R. & Smith, M.A., 1990. Thermoluminescence dating of a 50,000 year old human occupation site in northern Australia. Nature 345: 153–156.Google Scholar
Schramm, A., Stein, M. & Goldstein, S.L., 2000. Calibration of the 14C timescale to >40 ka by 234U-230Th dating of Lake Lisan (last Glacial Dead Sea). Earth and Planetary Science Letters 175: 27–40.Google Scholar
Sikes, E.L., Samson, C.R., Guilderson, T.P. & Howard, W.R., 2000. Old radiocarbon ages in the southwest Pacific Ocean during the last glacial period and deglaciation. Nature 405: 555–559.Google Scholar
Southon, J., Hughen, K., Herring, C. Lehman, S. & Overpeck, J., 2000. A detailed 14C calibration for the Bølling-Allerød-Younger Dryas. Abstract, 17th International Radiocarbon Conference, Israel, June 2000.Google Scholar
Stuiver, M., 1965. Carbon-14 content of 18th- and 19th-century wood: variations correlated with sunspot activity. Science 149: 533–535.Google Scholar
Stuiver, M., 1970. Long term 14C variations. In: Olsson, I.U. (ed.), Radiocarbon variations and absolute chronology. Proceedings of the 12Ih Nobel Symposium, Uppsala University : 197–213.Google Scholar
Stuiver, M., Kromer, B., Becker, B. & Ferguson, C.W. 1986. Radiocarbon age calibration back to 13,300 years BP and the 14C age matching of the German Oak and US Bristlecone Pine chronologies. Radiocarbon 28: 969–979.Google Scholar
Stuiver, M. & Kra, R.S. (eds.), 1986. Calibration issue. Radiocarbon 28: 805–1030.Google Scholar
Stuiver, M., Long, A. & Kra, R.S. (eds.), 1993. Calibration issue. Radiocarbon 35:1–244.Google Scholar
Stuiver, M. & Van der Plicht, J., (eds.) 1998. INTCAL98, Calibration Issue. Radiocarbon 40: 1041–1164.Google Scholar
Stuiver, M. & Reimer, P., 1993. Extended 14C database and revised Calib 3.0 14C age calibration program. Radiocarbon 35: 215–230.Google Scholar
Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W. Burr, G.S., Hughen, K.A., Kromer, B., McCormac, G., Van der Plicht, J. & Spurk, M., 1998. INTCAL98 Radiocarbon Age Calibration, 24,000-0 cal BP. Radiocarbon 40: 1041–1084.CrossRefGoogle Scholar
Suess, H.E., 1978. La Jolla measurements of Radiocarbon in treering dated wood. Radiocarbon 20: 1–18.Google Scholar
Tauber, H., 1970. The Scandinavian varve chronology and C14 dating. In: Olsson, I.U. (ed.), Radiocarbon variations and absolute chronology. Proceedings of the 12t Symposium, Uppsala University: 173–196.Google Scholar
Van der Plicht, J., 1993. The Groningen radiocarbon calibration program. Radiocarbon 35: 231–237.Google Scholar
Van der Plicht, J., 1999. Radiocarbon calibration for the Middle/Upper Palaeolithic: a comment. Antiquity 73: 119–123.CrossRefGoogle Scholar
Van der Plicht, J., (ed.), 2000. The 2000 Radiocarbon Varve/comparison issue. Radiocarbon 42: 313–322.Google Scholar
Voelker, A.H.L., Grootes, P.M., Nadeau, M.J. & Sarnthein, M., 2000. 14C levels in the Iceland Sea from 25–53 ka and their link to the Earth’s magnetic field intensity. Radiocarbon 42: 437–452.Google Scholar
Vogel, J.C. & Kronfeld, J., 1997. Calibration of Radiocarbon dates for the Late Pleistocene using U/Th dates on stalagmites. Radiocarbon 39: 27–32.Google Scholar
Wagner, G., Beer, J., Laj, C. Kissel, C. Masarik, J., Muscheler, R. & Synal, H.A., 2000. Chlorine-36 evidence for the Mono Lake event in the Summit GRIP ice core. Earth and Planetary Science Letters 181: 1–6.Google Scholar
Wohlfarth, B., 1996. The chronology of the Last Termination: a review of high-resolution terrestrial stratigraphies. Quaternary Science Reviews 15: 267–284.Google Scholar
Yiou, F., Raisbeck, G.M., Baumgartner, S., Beer, J., Hammer, C. Johnsen, S., Jouzel, J., Kubik, P., Lestringuez, J., Stievenard, M., Suter, M. & Yiou, P., 1997. Beryllium 10 in the Greenland Ice Core Project ice core at Summit, Greenland. Journal of Geophysical Research 102(C12): 26783–26794.Google Scholar
Yokoyama, Y., Esat, T.M., Lambeck, K. & Fifield, L.K., 2000. Last Ice Age millennial scale climate changes recorded in Huon Peninsula Corals. Radiocarbon 42: 383–401.Google Scholar
Zbinden, H., Andree, M., Oeschger, H., Ammann, B., Lotter, A., Bonani, G. & Wölfli, W., 1989. Atmospheric radiocarbon at the end of the Last Glacial: an estimate based on AMS Radiocarbon dates on terrestrial macrofossils from lake sediments. Radiocarbon 31: 795–804.Google Scholar
Zhu, R., Pan, Y. & Liu, Q., 1999. Geomagnetic excursions recorded in Chinese loess in the last 70,000 years. Geophysical Research Letters 26: 505–508.Google Scholar

Additional references

Beck, J.W., Richards, D.A., Edwards, R.L., Silverman, B.E., Smart, P.L., Donahue, D.J., Hererra-Osterheld, S., Burr, G.S., Calsoyas, L. Jull, A.J.T. & Biddulph, D., 2001. Extremely large variations of atmospheric 14C concentration during the last Glacial period. Science 292: 2453–2458.Google Scholar
Bard, E., 2001. Extending the calibrated Radiocarbon record. Science 292: 2443–2444.Google Scholar
Richards, D.A. & Beck, J.W., 2001. Dramatic shifts in atmospheric radiocarbon during the last glacial period. Antiquity 75: 482–485.Google Scholar