Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-18T20:01:38.758Z Has data issue: false hasContentIssue false

Assessing the contamination risk of five pesticides in a phreatic aquifer based on microcosm experiments and transport modelling at Sint-Jansteen (Zeeland, the Netherlands)

Published online by Cambridge University Press:  01 April 2016

I. Gaus*
Affiliation:
Laboratory for Applied Geology and Hydrogeology, University of Ghent (Belgium)
K. Vande Casteele
Affiliation:
Laboratory for Applied Geology and Hydrogeology, University of Ghent (Belgium)
*
Corresponding author, now at BRGM (French Geological Survey), 3 Avenue Claude Guillemin, BP6009, 45060 Orléans Cedex 2, France; e-mail:[email protected]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The risk of five pesticides (atrazine, simazine, bentazone, mecoprop and MCPA) contaminating a Quaternary phreatic aquifer (the water supply area of Sint-Jansteen, the Netherlands) is assessed based on laboratory experiments and solute transport modelling (MODFLOW-MT3D). Batch experiments either show long half-lives (at least 1500 days) or no degradation at all for bentazone, atrazine and simazine while mecoprop and especially MCPA degrade much faster (half-lives down to 4.1 days). Column experiments show significant sorption to the aquifer sediment only for atrazine and simazine under certain circumstances. A series of experiments were conducted during which the type of the sediment, the grain size, the content of the organic matter and the acidity of the groundwater were varied. These experimental results were subsequently incorporated in a solute transport model for the aquifer resulting in the following ranking of the contamination risk for the selected pesticides (from low to high): MCPA, mecoprop, simazine, atrazine, bentazone. This ranking was confirmed by observed pesticide concentrations in samples taken from piezometers and extraction wells from the aquifer.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2004

References

Adams, R.S., 1973. Factors influencing soil adsorption and bioactivity of pesticides. Residue Reviews 47: 1–54.Google ScholarPubMed
Agertved, J., Rügge, R. & Barker, J.F., 1992. Transformation of the pesticides MCPP & atrazine under aquifer conditions. Ground Water 30: 500–506.CrossRefGoogle Scholar
Albrechtsen, H.J., Mills, M.S., Aamand, J. & Bjerg, P.L., 2001. Degradation of herbicides in shallow Danish aquifers: an integrated laboratory and field study. Pesticide Management Science 57: 341–350.CrossRefGoogle ScholarPubMed
Beck, A.J. & Jones, K.C., 1996. The effects of particle-size, organicmatter content, crop residues and dissolved organic-matter on the sorption kinetics of atrazine and isoproturon by clay soil. Chemosphere 32: 2345–2358.CrossRefGoogle Scholar
De Moor, G. & Heyse, I., 1978. De morfologische evolutie van de Vlaamse Vallei. De Aardrijkskunde 4: 343–375.Google Scholar
Draper, N. & Smith, H., 1981. Applied regression analysis - Second edition. John Wiley & Sons (New York): 709 pp.Google Scholar
Fomsgaard, I.S., 1995. Degradation of pesticides in subsurface soils, unsaturated zone - a review of methods and results. International Journal of Environmental Analytical Chemistry 58: 231–245.CrossRefGoogle Scholar
Gaston, L.A., Locke, M.A. & Zablotowicz, R.M., 1996. Sorption and degradation of bentazon in conventional- and no-till dundee soil. Journal of Environmental Quality 25:120–126.Google Scholar
Gaus, I., 1998. Hydrogeologische en hydrochemische aspecten van de verspreiding van pesticiden in het grondwater, case: het waterwingebied van Sint-Jansteen (Nederland). University of Ghent (Belgium): unpublished Ph.D-thesis: 330 pp.Google Scholar
Gaus, I., 2000. Effects of water extraction in a vulnerable phreatic aquifer: consequences for groundwater contamination by pesticides, Sint-Jansteen area, the Netherlands. Hydrogeology Journal 8:218–229.CrossRefGoogle Scholar
Gelhar, L.W., Welty, C. & Rehfeldt, K.R., 1992. A critical review of data on field-scale dispersion in aquifers. Water Resources Research 28: 1955–1974.CrossRefGoogle Scholar
Helweg, A., 1993. Degradation and adsorption of 14C-mecoprop (MCPP) in surface soils and in subsoil. Influence of temperature, moisture content, sterilization and concentration on degradation. Science of the Total Environment 132: 229–241.Google Scholar
Isenbeck-Schröter, M., Bedbur, E., Kofod, M., König, B., Schramm, T. & Matthess, G., 1997. Occurrence of pesticide residues in water - assessment of the current situation in selected EU countries. Berichte, Fachbereich Geowissenschaften, Universität Bremen 91: 1–65.Google Scholar
Klint, M., Arvin, E. & Jensen, B.K., 1993. Degradation of the pesticides mecoprop and atrazine in unpolluted sandy aquifers. Journal of Environmental Quality 22: 262–266.CrossRefGoogle Scholar
Lebbe, L., 1996. Regression modelling of fresh-water heads and borehole resistivities observed on the shore. Proceedings MODELCARE 96 Calibration and Reliability in Groundwater Modelling, IAHS Publication 237: 199–208.Google Scholar
Lappin, H.M., Greaves, M.P. & Slater, J.H., 1985. Degradation of the herbicide mecoprop by a synergistic microbial community. Applied Environmental Microbiology 49: 429–433.CrossRefGoogle ScholarPubMed
Li, J., Langford, C.H. & Gamble, D.S., 1996. Atrazine sorption by mineral soil - effects of soil size fractions and temperature. Journal of Agricultural and Food Chemistry 44: 3680–3684.CrossRefGoogle Scholar
Loague, K., Abrams, S.N., Davis, S.N., Nguyen, A. & Stewart, I.T., 1998. A case study simulation of DBCP groundwater contamination in Fresno County, California - 2. Transport in the saturated subsurface. Journal of Contaminant Hydrology 29: 137–162.Google Scholar
Maloszewski, P., Zuber, A., Bedbur, E. & Matthess, G., 2003. Transport of three pesticides in ground water at Twin Lake Test Site, Chalk River, Ontario, Canada. Groundwater 41: 376–386.CrossRefGoogle ScholarPubMed
Matthess, G., 1994. Die Beschaffenheit des Grundwassers. Gebrüder Borntraeger, Berlin: 499 pp.Google Scholar
McDonald, M.G. & Harbaugh, A.W., 1988. A modular three-dimensional finite-difference ground-water flow model-U.S. Geological Survey, Techniques of Water-Resources Investigations Book 6: 586 pp.Google Scholar
Moreau-Kervévan, C. & Mouvet, C., 1998. Adsorption and desorption of atrazine, deethylatrazine and hydroxyatrazine by soil components. Journal of Environmental Quality 27: 46–53.CrossRefGoogle Scholar
Mouvet, C., Jeannot, R., Rutland, H. & Maciag, C., 1997. Stability of isoproturon, bentazone, terbuthylazine and alachlor in natural groundwater, surface water and soil water samples stored under laboratory conditions. Chemosphere 35: 1083–1097.CrossRefGoogle ScholarPubMed
Pestemer, W & Nordmeyer, H., 1990. Modelluntersuchungen mit ausgewählten Pflanzenschutzmitteln im Bodenprofil im Hinblick auf die Beurteilung einer Grundwasserbelastung. Mitteilungen Biologischer Bundesanstalt für Land und Forstwirtschaft 259: 1–80.Google Scholar
Smith, A. & Hayden, B., 1981. Relative persistence of MCPA, MCPB and mecoprop in Saskatchewan soils, and identification of MCPA in MCPB-treated soils. Weed Research 21: 179–183.CrossRefGoogle Scholar
Toräng, L., Nyholm, N. & Albrechtsen, H., 2003. Shifts in biodegradation kinetics of the herbicides MCPP and 2,4-D at low concentrations in aerobic aquifer materials. Environmental Science and Technology 37: 3095–3103.CrossRefGoogle ScholarPubMed
Van den Berg, R., Van der Linden, T., Mühlschlegel, J., van Beek, C., Jobson, J., Leistra, M. & Hoeks, J., 1990. Verdunning en omzetting van bestrijdingsmiddelen in grondwater. Bilthoven, Rijksinstituut voor volksgezondheid en milieuhygiëne Rapport nr. 725801002: 64 pp.Google Scholar
Van der Linden, A.M.A. & Boesten, J.J.T.I., 1989. Berekening van de mate van uitspoeling en accumulatie van bestrijdingsmiddelen als functie van hun sorptiecoëfficiënt en omzettingssnelheid in bouwvoormateriaal. Bilťhoven, Rijksinstituut voor volksgezondheid en milieuhygiëne Rapport nr. 728800003: 52 pp.Google Scholar
Vande Casteele, K., Gaus, I., De Breuck, W. & Walraevens, K., 2000. Identification and quantification of 77 pesticides in groundwater using solid phase coupled to micro liquid-liquid extraction and reversed phase liquid chromatography. Analytical Chemistry 72: 3093–3101.Google Scholar
Zheng, C., 1990. MT3D: A Modular Three-Dimensional Transport Model for Simulation of Advection, Dispersion and Chemical Reactions of Contaminants in Groundwater Systems. Report to the USEPA: 170 pp.Google Scholar