Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T09:01:27.948Z Has data issue: false hasContentIssue false

Assessing CH4 and CO2 emissions from wetlands in the Drenthe Province, the Netherlands: a modelling approach

Published online by Cambridge University Press:  24 March 2014

A.M.R. Petrescu*
Affiliation:
Vrije Universiteit, Faculty of Earth and Life Sciences, Department of Hydrology and Geo-Environmental Sciences, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands Email: [email protected].
J. van Huissteden
Affiliation:
Vrije Universiteit, Faculty of Earth and Life Sciences, Department of Hydrology and Geo-Environmental Sciences, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands Email: [email protected].
F. de Vries
Affiliation:
Wageningen University and Research Centre – Alterra, Soil Science Centre, the Netherlands Email: [email protected].
E.P.H. Bregman
Affiliation:
Department of sustainable development – Province of Drenthe, Westerbrink 1, postbus 122, 9400 AC, Assen Emails: [email protected], [email protected].
A. Scheper
Affiliation:
Department of sustainable development – Province of Drenthe, Westerbrink 1, postbus 122, 9400 AC, Assen Emails: [email protected], [email protected].

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Assessment of land use related greenhouse gas (GHG) emissions on larger spatial scales is usually achieved by modelling. Surface flux measurements are expensive and measurement locations too widely scattered to serve as spatially reliable flux estimates. Here we assess CO2 and CH4 fluxes from wetland nature reserves in the Dutch province of Drenthe, using the PEATLAND-VU model. Since surface flux observations in the province are absent and cannot be obtained in a short (<1 year) time frame, we extrapolated model validation from elsewhere to the research area. In this way a cost-effective methodology is developed for landuse-related greenhouse gas emission assessments, which can be applied by local governments at a subnational scale.

Nature development and restoration in the Netherlands involves usually the restoration of high water tables in former agricultural areas and extensivation or abandonment of agricultural activities. Wet peat soils are known to emit considerable quantities of CH4, while drained agricultural soils emit CO2 from decomposition of the soil organic matter. Therefore, these landuse changes may affect GHG emissions and an assessment of their effects is useful for environmental policy.

The PEATLAND-VU Model was used to simulate the CH4 and CO2 emissions for the years 2005-2007 and for May/June 2008. Previous field validation of the model elsewhere was checked for local validity with CH4 and CO2 flux measurements in short field campaigns in May/June 2008, at two locations, Visvliet and Balloërveld. These sites represent respectively eutrophic and oligotrophic peat and peaty soils, and showed large differences in fluxes. These flux differences were simulated correctly by the model by adapting the vegetation net primary production and methane oxidation parameters. Next, model simulations were run for eight combinations of vegetation and soil type. Using the simulated fluxes and the areal extent of the soil combinations, a GIS-based upscaling over all nature reserves was made.

This study shows that river valley floors with mesotrophic and eutrophic peat soils dominate the greenhouse fluxes of the area. CH4 fluxes are high in wet terrain, while the CO2 fluxes are high when water table is lower. The fluxes from oligotrophic peat soils are comparatively low. Nature development can contribute to a decrease of the total greenhouse gas flux from peat soils and to conservation of soil organic matter.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2009

References

Bogner, J.E., Sass, R.L. & Walter, B.P., 2000. Model comparisons of methane oxidation across a management gradient: Wetlands, rice production systems, and landfill. Global Biogeochemical Cycles 14, 10211033.Google Scholar
Broers, H.P., 2004. The spatial distribution of groundwater age for different geohydrological situations in the Netherlands: implications for groundwater quality monitoring at the regional scale. Journal of Hydrology 229: 84106, doi:10.1016/j.jhydrol.2004.04.023.CrossRefGoogle Scholar
Burgerhart, N., 2001. Mogelijkheden voor koolstofopslag in Nederlandse ecosystemen, Wageningen, Leerstoelgroep Natuurbeheer en Plantenecologie, Wageningen University Google Scholar
Collegeprogramma 2007-2011 Provincie Drenthe, accessed online at www.provincie.drenthe.nl/thema/bestuur_en_politiek/collegeprogramma on 19.09.2008.Google Scholar
De Vries, F., Hendriks, R.F.A., Kemmers, R.H. & Wolleswinkel, R., 2008. Het veen verdwijnt uit Drenthe. Omvang, oorzaken en gevolgen. Alterra, Alterrarapport 1661: 72 pp.Google Scholar
Granberg, G., Grip, H., Lofvenius, M.O., Sundh, I., Svensson, B.H. & Nillson, M., 1999. A simple model for simulation of water content, soil frost, and soil temperatures in boreal mixed mires. Water Resources Research 35(12): 37713782.CrossRefGoogle Scholar
Hazeu, G.W., 2006. Land use mapping and monitoring in the Netherlands (LGN5). 2nd EARSeL Workshop on Land Use and Land Cover, 28-30 09 2006, Bonn, Germany. Conference proceedings.Google Scholar
Hendriks, D.M.D., Van Huissteden, J., Dolman, A.J. & Van der Molen, M.K., 2007. The full greenhouse gas balance of an abandoned peat meadow, Biogeosciences 4: 411424.Google Scholar
Houweling, S., Kaminski, T., Dentener, F. J., Lelieveld, J. & Heimann, M., 1999. Inverse modeling of methane sources and sinks using the adjoint of a global transport model, Journal of Geophysical Research 104: 2613726160.Google Scholar
IPCC, 2001. Climate Change 2001: The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., Van der Linden, P.J., Dai, X., Maskell, K. & Johnson, C.A., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 881 pp.Google Scholar
IPCC, 2007. Working Group III Fourth Assessment Report, Climate Change 2007, Geneva: WHO and UNEP IPCC, 2007), accessed online at www.ipcc-wg2.org on 01.09.2008.Google Scholar
Kattenberg, A. (ed.), 2008: De toestand van het klimaat. KNMI De Bilt, www.knmi.nl/toestandklimaat: 48 pp.Google Scholar
Kuikman, P.J., 1996. Quantification of carbon fluxes in grasslands. Dutch National Research Programme on Global Air Pollution and Climate Change, phase 1. Final report project 852063, Instituut voor Agrobiologisch en Bodemvruchtbaarheidsonderzoek, Wageningen University.Google Scholar
Liblik, L.K., Zimmermann, P.R., Greenberg, J.P., Heidt, L.E. & Guenther, A.B., 1997. Methane emissions from wetlands in the zone of discontinuous permafrost: Fort Simpson, Northwest Territories, Canada. Global Biogeochemical Cycles 11: 485494.Google Scholar
Moore, T.R. & Roulet, N.T., 1993. Methane flux: Water table relations in northern wetlands. Geophysical Research Letters 20: 587590.Google Scholar
Petrescu, A.M.R, Van Huissteden, J., Jackowicz-Korczynski, M., Yurova, A., Christensen, T.R., Crill, P.M., Bäckstrand, K. & Maximov, T.C., 2008. Modelling CH4 emissions from arctic wetlands: effects of hydrological parameterization. Biogeosciences 5: 111121.Google Scholar
Schrier-Uijl, A. P., Veenendaal, E. M., Leffelaar, P. A., van Huissteden, J. C. & Berendse, F., 2008. Spatial and temporal variation of methane emissions in drained eutrophic peat agro-ecosystems: drainage ditches as emission hotspots. Biogeosciences Discussions, 5, 12371261.Google Scholar
Van den Akker, J.J.H., 2005. Maaivelddaling en verdwijnende veengronden. In: Rienks, W.A., Gerritsen, A.L. Veenweide 12x belicht. Een bloemlezing van het onderzoek van Wageningen Universiteit en Research Centrum, Wageningen.Google Scholar
Van den Bos, R.M., 2003. Restoration of former wetlands in the Netherlands; effect on the balance between CO2 sink and CH4 source. Netherlands Journal of Geosciences 82: 325332.Google Scholar
Van den Bos, R.M., van Huissteden, J. & Van de Plassche, O., 2003. A Model-based assessment of CO2 and CH4 fluxes in coastal peatlands (western Netherlands) for different climate and management scenarios. In: Van den Bos, R.M.: Human influence on carbon fluxes in coastal peatlands; process analysis, quantification and prediction. Thesis, Vrije Universiteit (Amsterdam): 91110.Google Scholar
Van Genuchten, M.T., 1980. A closed form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Science Society of America Journal 44: 892898.Google Scholar
Van Huissteden, J., Maximov, T.C. & Dolman, A.J., 2005. High CH4 flux from an arctic floodplain (Indigirka lowlands, Eastern Siberia). Journal of Geophysical Research 110, G02002, doi:10.1029/2005JG000010.Google Scholar
Van Huissteden, J., Van den Bos, M. & Martcorena Alvarez, I., 2006a. Modelling the effect of water-table management on CO2 and CH4 fluxes from peat soils. Netherlands Journal of Geosciences 85: 318.Google Scholar
Van Huissteden, J., Petrescu, A.M.R., Hendriks, D.M.D. & Rebel, K.T., 2009. Sensitivity analysis of a wetland CH4 emission model based on temperate and arctic wetland sites, Biogeosciences Discussions, 6: 90839126, www.biogeosciencesdiscuss.net/6/9083/2009/ Google Scholar
Van der Molen, M.K., Van Huissteden, J., Parmentier, F.J.W., Petrescu, A.M.R., Dolman, A.J., Maximov, T.C., Kononov, A.V., Karsanaev, S.V. & Suzdalov, D.A., 2007. The growing season greenhouse gas balance of a continental tundra site in the Indigirka lowlands, NE Siberia. Biogeosciences 4, 9851003.Google Scholar
Walter, B.P., Heimann, M., Shannon, R.D. & White, J.R., 1996. A process based model to derive CH4 emissions from natural wetlands. Report no. 215 Max-Planck-Institut für Meteorologie (Hamburg), 21 pp.Google Scholar
Walter, B.P. & Heimann, M., 2000. A process-based, climate-sensitive model to derive CH4 emissions from natural wetlands: Application to five wetland sites, sensitivity to model parameters and climate. Global Biogeochemical Cycles 14: 745765.Google Scholar
Wagner, D., Pfeiffer, E.-M. & Bock, E., 1999. Methane production in aerated marshland and model soils: effects of microflora and soil texture. Soil Biology and Biochemistry 31: 9991006.Google Scholar
Weiss, R., Alm, J., Laiho, R. & Laine, J., 1998. Modeling moisture retention in peat soils. Soil Science Society of America Journal 62: 305313.Google Scholar
Yurova, A., Wolf, A., Sagerfors, J. & Nilsson, M., 2007. Variations in net ecosystem exchange of carbon dioxide in a boreal mire: Modelling Mechanisms Linked to Water Table Position. Journal of Geophysical Research, Biogeosciences 112, G02025, doi:10.1029/2006JG000342.Google Scholar