Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T20:49:56.742Z Has data issue: false hasContentIssue false

The alluvial architecture of the Coevorden Field (Upper Carboniferous), the Netherlands

Published online by Cambridge University Press:  01 April 2016

H. Kombrink*
Affiliation:
Department of Physical Geography, Faculty of Geosciences, Utrecht University, P.O. Box 80.115, 3508 TC Utrecht, the Netherlands
J.S. Bridge
Affiliation:
Department of Geological Sciences, Binghamton University, Binghamton, NY13902-6000, USA
E. Stouthamer
Affiliation:
Department of Physical Geography, Faculty of Geosciences, Utrecht University, P.O. Box 80.115, 3508 TC Utrecht, the Netherlands
*
*corresponding author. Present address: Department of Earth Sciences, Faculty of Geosciences, Utrecht University, P.O. Box 80115, 3508 TC Utrecht, the Netherlands. Email:[email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A detailed reconstruction of the alluvial architecture of the Coevorden gas Field (Tubbergen Formation, Upper Carboniferous), which is located in the northeastern part of the Netherlands, is presented. This reconstruction is based on well logs, cross-sections and paleogeographic maps. Sedimentological analysis of a 93 m long core allowed to refine the interpretation of the depositional environment. Accurate width determinations are necessary to correctly correlate fluvial sandbodies and reconstruct alluvial architecture. Without using sedimentological information, sandbody width is likely to be overestimated. A method developed by Bridge and Tye (2000) was used to calculate the width of one sandstone body from cross-set thicknesses. On the basis of this calculation and the paleogeographic reconstructions, it may be stated that on average the width of the channel belts we studied in the Coevorden field does not exceed 4 km. Moreover, our paleogeographic reconstructions, which point to a northwestern direction of paleoflow, are in accordance with earlier observations from the study area. The Tubbergen Formation and time-equivalent sediments in Germany are reviewed briefly to put the Coevorden Field in a regional context. The thickness of the Tubbergen Formation is ∼450 m in our study area. In the adjacent German area, time-equivalent sedimentary sequences reach higher thicknesses. This may be attributed to tectonic movements along the Gronau Fault zone and the coming into existence of the Ems Low, of which the Coevorden Field is the westernmost part.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2007

References

Besly, B.M. & Fielding, C.R., 1989. Palaeosols in Westphalian coal-bearing and red-bed sequences, central and northern England. Palaeogeography, Palaeoclimatology, Palaeoecology 70: 303330.Google Scholar
Besly, B.M., Burley, S.D. & Turner, P., 1993. The Late Carboniferous ‘Barren Red Bed’ play of the Silver Pit area, Southern North Sea. In: Parker, J.R. (ed.): Petroleum Geology of Northwest Europe: Proceedings of the 4th Conference. The Geological Society (London): 727740.Google Scholar
Bridge, J.S., 1984. Large-scale facies sequences in alluvial overbank environments. Journal of Sedimentary Petrology 54: 583588.Google Scholar
Bridge, J.S., 1993. The interaction between channel geometry, water now, sediment transport and deposition in braided rivers. In: Best, J.L. & Bristow, C.S. (ed.): Braided Rivers. Geological Society Special Publication (London) 75: 1372.Google Scholar
Bridge, J.S., 2003. Rivers and floodplains. Blackwells (Oxford): 491 pp.Google Scholar
Bridge, J.S. & Mackey, S.D., 1993. A theoretical study of fluvial sandstone body dimensions. In: Flint, S.S. & Bryant, I.D. (ed.): Geological modeling of hydrocarbon reservoirs. International Association of Sedimentologists Special Publication 15: 213236.Google Scholar
Bridge, J.S. & Tye, R.S., 2000. Interpreting the dimensions of ancient fluvial channel bars, channels, and channel belts from wireline-logs and cores: American Association of Petroleum Geologists Bulletin 84: 12051228.Google Scholar
Bristow, C.S., Skelly, R.L. & Ethridge, F.G., 1999. Crevasse splays from the rapidly aggrading, sand-bed, braided Niobrara River, Nebraska: effect of base-level rise: Sedimentology 46: 10291047.Google Scholar
Caputo, M.V. & Crowell, J.C., 1985. Migration of glacial centers across Gondwana during Paleozoic Era. Geological Society of America Bulletin 96: 10201036.Google Scholar
Cojan, I., 1999. Carbonate-rich palaeosols in the Late Cretaceous-Early Palaeogene series of the Provence Basin (France). In: Thiry, M. & Simon-Coicon, R. (ed.): Palaeoweathering, Palaeosurfaces and related Continental Deposits. International Association of Sedimentologists Special Publication 27: 323335.Google Scholar
Coleman, J.M. & Gagliano, S.M., 1964. Sedimentary structures: Mississippi River deltaic plain. In: Middleton, G.V. (ed.): Primary sedimentary structures and their hydrodynamic interpretation. Society for Sedimentary Geology (SEPM) Special Publication 12: 133148.Google Scholar
Coleman, J.M. & Prior, D.B., 1982. Deltaic environments. In: Scholle, P.A. & Spearing, D. (ed.): Sandstone Depositional Environments. American Association of Petroleum Geologists (Tulsa, Oklahoma): 139178.Google Scholar
Coward, M.P., 1993. The effect of late Caledonian and Variscan continental escape tectonics on basement structure, Paleozoic basin kinematics and subsequent Mesozoic basin development in NW Europe. In: Parker, J.R. (ed.): Petroleum Geology of Northwest Europe: Proceedings of the 4th Conference. The Geological Society (London): 10951108.Google Scholar
Crowley, T.J. & Baum, S.K., 1991. Estimating Carboniferous sea-level fluctuations from Gondwanan ice extent. Geology 19: 975977.2.3.CO;2>CrossRefGoogle Scholar
David, F., 1987. Sandkörper in fluviatilen Sandstein des Unteren Westfal D (Oberkarbon) am Piesberg bei Osnabrück. Facies 17: 5158.Google Scholar
David, F., 1990. Sedimentologie und Beckenanalyse im Westfal C und D des nordwestdeutschen Beckens. DGMK-Bericht 384-3.Google Scholar
Den Hartog Jager, D.G., Boekelman, W. & Mijnlieff, H.F., 1993. Regional geology of the Carboniferous in the NE Netherlands: Nederlandse Aardolie Maatschappij (NAM) internal report No. 24929, Assen.Google Scholar
Drozdzewski, G., 1985. Tiefentectonik der Ibbenbürener Karbon-Scholle. In: Drozdzewski, G., Engel, H., Wolf, R. & Wrede, V. (ed.): Beiträge zur Tiefentectonik westdeutscher Steinkohlenlagerstätten. Geol. L.-Amt Nordrh.-Westf. (Krefeld): 189216.Google Scholar
Drozdzewski, G., 2005. Zur sedimentären Entwicklung des Subvariscikums im Namurium und Westfalium Nordwestdeutschlands. Cour. Forsch.-Inst. Senkenberg 254: 271320.Google Scholar
Drozdzewski, G. & Wrede, V. 1994. Faltung und Bruchtektonik - Analyse der Tektonik im Subvariscikum. Fortschritte Geol. Rheinl. U. Westfalen, Krefeld, 38: 7187.Google Scholar
Fraser, A.J. & Gawthorpe, R.L., 1990. Tectono-stratigraphic development and hydrocarbon habitat of the Carboniferous in northern England. In: Hardman, R.F.P. & Brooks, J. (ed.): Tectonic events responsible for Britain’s oil and gas reserves. Geological Society Special Publication (London) 55: 4986.Google Scholar
Geluk, M., De Haan, H., Schroot, B. Wolters, B. & Nio, S.D., 2002. The PermoCarboniferous gas play, Cleaver bank High area, southern North Sea, the Netherlands. In: Hills, L.V., Henderson, C.M. & Bamber, E.W. (ed.): Carboniferous and Permian of the World. Canadian Society of Petroleum Geologists Memoir 19: 877894.Google Scholar
Hampson, G.J., Davies, S.J. Elliott, T., Flint, S.S. & Stollhofen, H., 1999a: Incised valley fill sandstone bodies in Upper Carboniferous fluvio-deltaic strata: recognition and reservoir characterization of Southern North Sea analogues. In: Fleet, A.J. & Boldy, S.A.R. (ed.): Petroleum geology of Northwest Europe: Proceedings of the 5th Conference. The Geological Society (London): 771788.Google Scholar
Hampson, G.J., Stollhofen, H. & Flint, S., 1999b. A sequence stratigraphie model for the Lower Coal Measures (Upper Carboniferous) of the Ruhr district, north-west Germany. Sedimentology 46: 11991231 CrossRefGoogle Scholar
Hedemann, H.-A., Schuster, A., Stancu-Kristoff, G. & Lösch, J., 1984. Die Verbreitung der Kohlenflöze des Oberkarbons in Nordwest-deutschland und ihre stratigraphische Einstufung. Fortschr. Geol. Rheinld. U. Westf. 32: 3988.Google Scholar
Jankowski, B., David, F. & Selter, V. 1993. Facies complexes of the Upper Carboniferous in northwest Germany and their structural implications. In: Gayer, R.A., Greilling, R.O. & Vogel, A.K. (ed.): Rhenohercynian and Subvariscan fold belts. Vieweg, Wiesbaden: 138158.Google Scholar
Jones, N.S. & Glover, B.W., 2005. Fluvial sandbody architecture, cyclicity and sequence stratigraphical setting - implications for hydrocarbon reservoirs: the Westphalian C and D of the Osnabrück and Ibbenbüren area, northwest Germany, In: Collinson, J.D., Evans, D.J., Holliday, D.W. & Jones, N.S. (ed.): Carboniferous hydrocarbon geology - The southern North Sea and surrounding areas. Yorkshire Geological Society Occasional Publication 7: 5774.Google Scholar
Kraus, M.J. & Aslan, A., 1999. Palaeosol sequences in floodplain environments: a hierarchical approach. In: Thiry, M. & Simon-Coicon, R. (ed.): Palaeoweathering, Palaeosurfaces and related Continental Deposits. International Association of Sedimentologists Special Publication 27: 303321.Google Scholar
Leeder, M.R. & McMahon, A.H., 1988. Upper Carboniferous (Silesian) basin subsidence in northern Britain. In: Besly, B.M. & Kelling, G. (ed.): Sedimentation in a synorogenic basin complex. The Upper Carboniferous of Northwest Europe: 4352.Google Scholar
Lunt, I.A., Bridge, J.S. & Tye, R.S., 2004. A quantitative, three-dimensional model of gravelly braided rivers. Sedimentology 51: 377414.Google Scholar
Maynard, J.R. & Leeder, M.R., 1992. On the periodicity and magnitude of late Carboniferous glacio-eustatic sea-level changes. Journal of the Geological Society, London: 149, 303311.Google Scholar
Menning, M., Alekseev, A.S., Chuvashov, B.I., Davydov, V.I., Devuyst, F.-X., Forke, H.C., Grunt, T.A., Hance, L., Heckel, P.H., Izokh, N.G., Jin, Y.-G., Jones, P.J., Kotlyar, G.V., Kozur, H.W., Nemyrovska, T.I., Schneider, J.W., Wang, X.-D., Weddige, K., Weyer, D. & Work, D.M., 2006. Global time scale and regional stratigraphie reference scales of Central and West Europe, East Europe, Tethys, South China, and North America as used in the Devonian-Carboniferous-Permian Correlation Chart 2003 (DCP 2003). Palaeogeography, Palaeoclimatology, Palaeoecology 240: 318372.Google Scholar
Pagnier, H.J.M. & Van Tongeren, P., 1996. Upper Carboniferous of borehole ‘De Lutte-6’ and evaluation of the Tubbergen in the eastern and southeastern parts of the Netherlands. Mededelingen Rijks Geologische Dienst 55 (Haarlem): 330.Google Scholar
Pèrez-Arlucea, M. & Smith, N.D., 1999. Depositional patterns following the 1870’s avulsion of the Saskatchewan River (Cumberland Marshes, Saskatchewan): Journal of Sedimentary Research 69: 6273.Google Scholar
Quirk, D.G. & Aitken, J.F., 1997. The structure of the Westphalian in the northern part of the southern North Sea. In: Ziegler, K., Turner, P. & Daines, S.R. (ed.): Petroleum Geology of the Southern north Sea: Future Potential. Geological Society Special Publication (London) 123: 143152.Google Scholar
Saucier, R.T., 1994. Geomorphology and Quaternary Geologic History of the Lower Mississippi Valley. Mississippi River Commission (Vicksburg): 364 pp.Google Scholar
Schroot, B.M. & De Haan, H.B., 2003. An improved regional structural model of the Upper Carboniferous of the Cleaver Bank High based on 3D seismic interpretation. In: Nieuwland, D.A. (ed.): New insights into structural interpretation and modeling: Geological Society Special Publication (London) 212: 2337.Google Scholar
Selter, W., 1990. Sedimentologie und Klimaentwicklung im Westfal C/D und Stefan des nordwestdeutschen Oberkarbon-Beckens. DGMK-Bericht 3844.Google Scholar
Süss, M.P., 1996. Sedimentologie und Tektonik des Ruhr-Beckens: Sequenz-stratigraphische Interpretation und Modellierung eines Vorlandbeckens der Varisciden. Dissertation Rheinische Friedrich-Wilhelms University (Bonn): 147 pp.Google Scholar
Süss, M.P., Drozdzewski, G. & Schäfer, A., 2001. The Ruhr and Aachen basins - sedimentary environments, sequence stratigraphy model, and synsedimentary tectonics of Variscan foreland basins (Namurian B/C to Westphalian C, W. Germany). In: Hills, L.V., Henderson, C.M. & Bamber, E.W. (ed.): Carboniferous and Permian of the World. Canadian Society of Petroleum Geologists Memoir 19: 208227.Google Scholar
Tye, K.S. & Coleman, J.M., 1989. Depositional processes and stratigraphy of fluvially dominated lacustrine deltas: Mississippi Delta Plain. Journal of Sedimentary Petrology 59: 973996.Google Scholar
Van Adrichem Boogaert, H.A. & Kouwe, W.F.P. (ed.), 1993. Stratigraphie nomenclature of the Netherlands, revision and update by RGD and NOGEPA. Mededelingen Rijks Geologische Dienst (Delft/Haarlem) 50: 140.Google Scholar
Van der Zwan, C.J., Van der Laar, J.G.M., Pagnier, H.J.M. & Van Amerom, H.W.J., 1993. Palynological, ecological and climatological synthesis of the Upper Carboniferous of the well De Lutte-6 (East Netherlands): Comptes Rendus XII ICC-P 1: 167186.Google Scholar
Wanless, H.R. & Shepard, F.P., 1936. Sea level and climate changes related to late Palaeozoic cycles. Geological Society of America Bulletin 47: 11771206.Google Scholar
Wright, V.P., 1999. Assessing flood duration gradients and fine-scale environmental change on ancient floodplains. In: Marriott, S.B. & Alexander, J. (ed.): Floodplains: Interdisciplinary Approaches. Geological Society Special Publication (London) 163: 279287.Google Scholar
Wright, V.P. & Vanstone, S.D., 2001. Onset of late Palaeozoic glacio-eustasy and the evolving climates of low latitude areas: a synthesis of current understanding. Journal of the Geological Society of London 158: 579582 Google Scholar
Ziegler, P.A., 1990. Geological Atlas of Western and Central Europe (2nd edition). Shell Internationale Petroleum Maatschappij B.V.; Geological Society Publishing House (Bath): 232 pp.Google Scholar