Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-24T19:58:37.008Z Has data issue: false hasContentIssue false

A statistical information extraction system for Turkish

Published online by Cambridge University Press:  04 August 2003

GÖKHAN TÜR
Affiliation:
AT&T Labs – Research, 180 Park Avenue, Florham Park, NJ 07932, USA
DILEK HAKKANI-TÜR
Affiliation:
AT&T Labs – Research, 180 Park Avenue, Florham Park, NJ 07932, USA
KEMAL OFLAZER
Affiliation:
Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul TR-81474, Turkey

Abstract

This paper presents the results of a study on information extraction from unrestricted Turkish text using statistical language processing methods. In languages like English, there is a very small number of possible word forms with a given root word. However, languages like Turkish have very productive agglutinative morphology. Thus, it is an issue to build statistical models for specific tasks using the surface forms of the words, mainly because of the data sparseness problem. In order to alleviate this problem, we used additional syntactic information, i.e. the morphological structure of the words. We have successfully applied statistical methods using both the lexical and morphological information to sentence segmentation, topic segmentation, and name tagging tasks. For sentence segmentation, we have modeled the final inflectional groups of the words and combined it with the lexical model, and decreased the error rate to 4.34%, which is 21% better than the result obtained using only the surface forms of the words. For topic segmentation, stems of the words (especially nouns) have been found to be more effective than using the surface forms of the words and we have achieved 10.90% segmentation error rate on our test set according to the weighted TDT-2 segmentation cost metric. This is 32% better than the word-based baseline model. For name tagging, we used four different information sources to model names. Our first information source is based on the surface forms of the words. Then we combined the contextual cues with the lexical model, and obtained some improvement. After this, we modeled the morphological analyses of the words, and finally we modeled the tag sequence, and reached an F-Measure of 91.56%, according to the MUC evaluation criteria. Our results are important in the sense that, using linguistic information, i.e. morphological analyses of the words, and a corpus large enough to train a statistical model significantly improves these basic information extraction tasks for Turkish.

Type
Research Article
Copyright
2003 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This work was done while the first and second authors were PhD students at Bilkent University, Ankara, Turkey.