Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T09:37:04.401Z Has data issue: false hasContentIssue false

Variétés Singulières et Extension des Fonctions Holomorphes

Published online by Cambridge University Press:  11 January 2016

Vincent Duquenoy
Affiliation:
Laboratoire de Géométrie, Analyse et Topologie C.N.R.S. U.M.R. 8524 U.F.R. de Mathématiques, Université Lille I, 59655 Villeneuve d’Ascq Cedex, France, [email protected]
Emmanuel Mazzilli
Affiliation:
Laboratoire de Géométrie, Analyse et Topologie C.N.R.S. U.M.R. 8524 U.F.R. de Mathématiques, Université Lille I, 59655 Villeneuve d’Ascq Cedex, France, [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, we study a problem of extension of holomorphic functions given on a complex hypersurface with singularities on the boundary of a strictly pseudoconvex domain.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 2008

References

[1] Berndtsson, B., The extension theorem of Ohsawa-Takegoshi and the theorem of Donnelly-Fefferman, Ann. Inst. Fourier, 4 (1996), 10831094.CrossRefGoogle Scholar
[2] Bonneau, P., Cumenge, A. and Zeriahi, A., Division dans les espaces de Lipschitz de fonctions holomorphes, Lecture notes 1198, 1984.Google Scholar
[3] Diederich, K. and Mazzilli, E., A remark on the theorem of Ohsawa-Takagoshi, Nagoya Math. J., 158 (2000), 185189.CrossRefGoogle Scholar
[4] Henkin, G., Continuation of bounded holomorphic functions from submanifold in general position to strictly pseudoconvex domains, Math. of the U.S.S.R. Izvestija, 6 (1972), 536563.CrossRefGoogle Scholar
[5] Henkin, G. and Passare, M., Abelian differentials on singular varieties, Invent. Math., 135 (1999), 297328.CrossRefGoogle Scholar
[6] Maati, A. and Mazzilli, E., Extension et division dans les variétés à croisements normaux, Publ. Mat., 45 (2001), 343369.CrossRefGoogle Scholar
[7] Passare, M., Residues, currents, and their relation to ideal of holomorphic functions, Math. Scand., 62 (1988), 75152.CrossRefGoogle Scholar
[8] Tsikh, A., Multidimensional residues and their applications, Trans. of Math. Monogr 103, 1992.Google Scholar
[9] Tsikh, A. and Yger, A., Residue currents, J. Math. Sci., 120 (2004), 19161971.CrossRefGoogle Scholar