Published online by Cambridge University Press: 22 January 2016
Let p be an odd prime and d be a positive integer prime to p such that d ≢ 2 mod 4. For technical reasons, we also assume that . For each integer n ≥ 1, we choose a primitive nth root ζn of 1 so that
whenever n | m. Let
be its cyclotomic Zp-extension, where
is the nth layer of this extension. For n ≤ 1, we denote the Galois group Ga\(Kn/K0) by Gn, the unit group of the ring of integers of Kn by En, and the group of cyclotomic units of Kn by Cn. For the definition and basic properties of cyclotomic units such as the index theorem, we refer [6] and [7]. In this paper we examine the injectivity of the homomorphism
between the first cohomology groups induced by the inclusion Cn → En.