Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-29T09:44:14.479Z Has data issue: false hasContentIssue false

A unitary representation of the basical central extension of a loop group

Published online by Cambridge University Press:  22 January 2016

Rémi Léandre*
Affiliation:
Département de Mathématiques, Institut Elie Cartan, Facultédes Sciences Universitéde Nancy I, 54000. Vandoeuvre-les-Nancy, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We construct a measure over the string bundle associated to the loop space of a Riemannian manifold. We deduce a representation of a finite energy Kac-Moody group analoguous to the energy representation.

Keywords

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 2000

References

[A.H-K] Albeverio, S. and Hoegh-Krohn, R., The energy representation of Sobolev Lie groups, Compositio Math., 36 (1978), 3752.Google Scholar
[A.H-K.T.V] Albeverio, S., Hoegh-Krohn, R., Testard, D., Vershik, A., Factorial representation of path groups, J. Funct. Analysis, 51 (1983), 115131.CrossRefGoogle Scholar
[Bi1] Bismut, J. M., Large deviations and the Malliavin Calculus, Progress in Maths., 45, Birkhäuser, 1984.Google Scholar
[Bi2] Bismut, J. M., Index theorem and equivariant cohomology on the loop space, Com. Maths. Physics., 98 (1985), 213237.CrossRefGoogle Scholar
[C.M] Carey, A. L. and Murray, M. K., String structure and the path fibration of a group, Com. Math. Physics, 141 (1991), 441452.CrossRefGoogle Scholar
[C.S] Chern, S. S. and Simons, J., Characteristic forms and geometric invariants, Ann. maths., 99 (1974), 4869.CrossRefGoogle Scholar
[C.P] Coquereaux, R. and Pilch, K., String structures on loop bundles, Com. Maths. Physics., 120 (1989), 353378.CrossRefGoogle Scholar
[Dr] Driver, B., A Cameron-Martin type quasi-invariance formula for Brownian motion on compact manifolds, J. Funct. Analysis, 110 (1992), 272376.CrossRefGoogle Scholar
[H-K] Hoegh-Krohn, R., Relativistic quantum statistical mechanics in 2 dimensional space time, Com. Math. Physics, 38 (1974), 195224.CrossRefGoogle Scholar
[J.L] Jones, J. D. S. and Léandre, R., Lp Chen forms on loop spaces, In “Stochastic Analysis” (1991), Cambridge University Press, 104162.Google Scholar
[Ka] Kac, V., Infinite dimensional Lie algebras, Cambridge University Press, 1985.Google Scholar
[K] Killingback, T., World-sheet anomalies and loop geometry, Nucl. Phys. B., 288 (1987), 578588.CrossRefGoogle Scholar
[Le1] Léandre, R., Integration by parts and rotationnaly invariant Sobolev Calculus on free loop spaces, XXVII Winter School of theoretical physics, J. Geometry and Physics, 11 (1993), 517528.CrossRefGoogle Scholar
[Le2] Léandre, R., Invariant Sobolev Calculus on free loop space, Acta Applicandae Mathematicae, 46 (1997), 267350.Google Scholar
[Le3] Léandre, R., Brownian cohomology of an homogeneous manifold, In “New trends in stochastic analysis” (1997), World Scientific, 305347.Google Scholar
[Le4] Léandre, R., Hilbert space of spinor fields over the free loop space, Reviews in Maths. Physics, 9.2 (1997), 243277.CrossRefGoogle Scholar
[Le5] Léandre, R., Stochastic gauge transform of the string bundle, J. Geometry and Physics, 26 (1998), 125.CrossRefGoogle Scholar
[Le6] Léandre, R., String structure over the Brownian bridge, J. Math. Physics, 40. (1999), 454479.CrossRefGoogle Scholar
[Le7] Léandre, R., Stochastic cohomology of the frame bundle of the loop space, J. Nonlinear Math. Physics, 5.1 (1998), 2340.CrossRefGoogle Scholar
[Le8] Léandre, R., Singular integral homology of the stochastic loop space, Infi. Dim. Analysis, Quantum Proba. rel. Topics, 1.1 (1998), 1731.CrossRefGoogle Scholar
[Le9] Léandre, R., Stochastic cohomology of Chen-Souriau and line bundle over the Brownian bridge, to be published in P.T.R.F.Google Scholar
[Le10] Léandre, R., Cover of the Brownian bridge and stochastic symplectic action, Rev. Math. Phys., 12 (2000), no. 1, 91137.CrossRefGoogle Scholar
[M] Malliavin, P., Stochastic Analysis, Grund. Math. Wissen, 313, Springer, 1997.Google Scholar
[M.M] Malliavin, M. P. and Malliavin, P., Integration on loop groups III. Asymptotics Peter-Weyl orthogonality, J. Funct. Analysis, 108 (1992), 1346.CrossRefGoogle Scholar
[Mi] Mickelsson, J., Current algebras and groups, Plenum Press, 1989.CrossRefGoogle Scholar
[Ott] Ottesen, J. T., Infinite dimensional groups and algebras in Quantum physics, Lect. Notes. Physics, 1995.Google Scholar
[P.S] Pressley, A. and Segal, G., Loop groups, Oxford University Press, 1986.Google Scholar
[Se] Segal, G., Elliptic cohomology, Séminaire Bourbaki 695, Astérisque 161162 (1988), 187201.Google Scholar
[Wi] Witten, E., The index of the Dirac operator in loop space, In “elliptic curves and modular forms in algebraic topology”, Lec. Notes. Maths., 1326 (1988), 161181.Google Scholar