Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-23T22:00:49.499Z Has data issue: false hasContentIssue false

Threefolds with negative Kodaira dimension and positive irregularity

Published online by Cambridge University Press:  22 January 2016

Mauro Beltrametti
Affiliation:
Istituto Matematico, Universita di Genova, Via L. B. Alberti, 4-Genova, Italy
Paolo Francia
Affiliation:
Istituto Matematico, Universita di Genova, Via L. B. Alberti, 4-Genova, Italy
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The purpose of this paper is to study threefolds X, with negative Kodaira dimension k(X) and positive irregularity q(X), defined over the complex field C.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1983

References

[B] Beauville, A., Surfaces algébriques complexes, Asterisque, 54 (1978).Google Scholar
[EGA] Grothendieck, A. and Dieudonné, J., Éléments de Géométrie Algébrique, I. 166, Springer (1971). and II. Publ. I.H.E.S., 8 (1961).Google Scholar
[FGA] Grothendieck, A., Fondements de la Géométrie Algébrique, Sem. Bourbaki, 195762 (1962).Google Scholar
[H] Hartshorne, R., Algebraic geometry, Graduate Texts in Math., Springer, 52 (1977).Google Scholar
[I] Iskovskih, V. A., Minimal models of rational surfaces over arbitrary fields, Math. USSR-Izv., 14 (1980), 1739.CrossRefGoogle Scholar
[li] Iitaka, S., Algebraic geometry (An introduction to birational geometry of algebraic varieties), Graduate Texts in Math., Springer, 76 (1981).Google Scholar
[M] Mabuchi, T., Invariant β and uniruled threefolds, preprint.Google Scholar
[Mo] Mori, S., Threefolds whose canonical bundles are not numerically effective, preprint.Google Scholar
[T] Tsen, C. C., Divisionsalgebren über Functionkörpern, Nachr. Wiss. Göttingen 1933.Google Scholar
[U1] Ueno, K., Classification theory of algebraic varieties and compact complex spaces, Springer, 439 (1975).Google Scholar
[U2] Ueno, K., Classification of algebraic manifolds, Proc. Internat. Congress Math. Helsinki, (1978), 54556.Google Scholar
[V1] Viehweg, E., Canonical divisors and the additivity of the Kodaira dimension for morphisms of relative dimension one, Compositio Math., 35 (1977), 197223.Google Scholar
[V2] Viehweg, E., Klassificationstheorie algebraischer Varietaten der Dimension drei, Compositio Math., 41 (1980), 361400.Google Scholar
[Z] Zagorskii, A., Three-dimensional conical fibrations, Matem. Zametki, 21, 6 (1977), 745758; English transl. in Math. Notes, 21 (1977), 420427.Google Scholar