Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-07T22:31:42.807Z Has data issue: false hasContentIssue false

SUR LA PRÉSERVATION DE LA COHÉRENCE PAR IMAGE INVERSE EXTRAORDINAIRE D’UNE IMMERSION FERMÉE

Published online by Cambridge University Press:  14 June 2019

DANIEL CARO*
Affiliation:
Laboratoire de mathématiques Nicolas-Oresme, Université de Caen Campus 2, 14032 Caen Cedex, France email [email protected]

Abstract

Let ${\mathcal{V}}$ be a complete discrete valuation ring of unequal characteristic with perfect residue field, $u:{\mathcal{Z}}{\hookrightarrow}\mathfrak{X}$ be a closed immersion of smooth, quasi-compact, separated formal schemes over ${\mathcal{V}}$, $T$ be a divisor of $X$ such that $U:=T\cap Z$ is a divisor of $Z$, and $\mathfrak{D}$ a strict normal crossing divisor of $\mathfrak{X}$ such that $u^{-1}(\mathfrak{D})$ is a strict normal crossing divisor of ${\mathcal{Z}}$. We pose $\mathfrak{X}^{\sharp }:=(\mathfrak{X},\mathfrak{D})$, ${\mathcal{Z}}^{\sharp }:=({\mathcal{Z}},u^{-1}\mathfrak{D})$ and $u^{\sharp }:{\mathcal{Z}}^{\sharp }{\hookrightarrow}\mathfrak{X}^{\sharp }$ the exact closed immersion of smooth logarithmic formal schemes over ${\mathcal{V}}$. In Berthelot’s theory of arithmetic ${\mathcal{D}}$-modules, we work with the inductive system of sheaves of rings $\widehat{{\mathcal{D}}}_{\mathfrak{X}^{\sharp }}^{(\bullet )}(T):=(\widehat{{\mathcal{D}}}_{\mathfrak{X}^{\sharp }}^{(m)}(T))_{m\in \mathbb{N}}$, where $\widehat{{\mathcal{D}}}_{\mathfrak{X}^{\sharp }}^{(m)}$ is the $p$-adic completion of the ring of differential operators of level $m$ over $\mathfrak{X}^{\sharp }$ and where $T$ means that we add overconvergent singularities along the divisor $T$. Moreover, Berthelot introduced the sheaf ${\mathcal{D}}_{\mathfrak{X}^{\sharp }}^{\dagger }(\text{}^{\dagger }T)_{\mathbb{Q}}:=\underset{\underset{m}{\longrightarrow }}{\lim }\,\widehat{{\mathcal{D}}}_{\mathfrak{X}^{\sharp }}^{(m)}(T)\otimes _{\mathbb{Z}}\mathbb{Q}$ of differential operators over $\mathfrak{X}^{\sharp }$ of finite level with overconvergent singularities along $T$. Let ${\mathcal{E}}^{(\bullet )}\in \underset{\displaystyle \longrightarrow }{LD}\text{}_{\mathbb{Q},\text{coh}}^{\text{b}}(\widehat{{\mathcal{D}}}_{\mathfrak{X}^{\sharp }}^{(\bullet )}(T))$ and ${\mathcal{E}}:=\varinjlim ~({\mathcal{E}}^{(\bullet )})$ be the corresponding object of $D_{\text{coh}}^{\text{b}}({\mathcal{D}}_{\mathfrak{X}^{\sharp }}^{\dagger }(\text{}^{\dagger }T)_{\mathbb{Q}})$. In this paper, we study sufficient conditions on ${\mathcal{E}}$ so that if $u^{\sharp !}({\mathcal{E}})\in D_{\text{coh}}^{\text{b}}({\mathcal{D}}_{{\mathcal{Z}}^{\sharp }}^{\dagger }(\text{}^{\dagger }U)_{\mathbb{Q}})$ then $u^{\sharp (\bullet )!}({\mathcal{E}}^{(\bullet )})\in \underset{\displaystyle \longrightarrow }{LD}\text{}_{\mathbb{Q},\text{coh}}^{\text{b}}(\widehat{{\mathcal{D}}}_{{\mathcal{Z}}^{\sharp }}^{(\bullet )}(U))$. For instance, we check that this is the case when ${\mathcal{E}}$ is a coherent ${\mathcal{D}}_{\mathfrak{X}^{\sharp }}^{\dagger }(\text{}^{\dagger }T)_{\mathbb{Q}}$-module such that the cohomological spaces of $u^{\sharp !}({\mathcal{E}})$ are isocrystals on ${\mathcal{Z}}^{\sharp }$ overconvergent along $U$.

Type
Article
Copyright
© 2019 Foundation Nagoya Mathematical Journal

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Références

Abe, T. and Caro, D., Theory of weights in p-adic cohomology, Amer. J. Math. 140(4) (2018), 879975.10.1353/ajm.2018.0021Google Scholar
Berthelot, P., -modules arithmétiques. I. Opérateurs différentiels de niveau fini, Ann. Sci. Éc. Norm. Supé (4) 29(2) (1996), 185272.10.24033/asens.1739Google Scholar
Berthelot, P., Introduction à la théorie arithmétique des 𝓓-modules, Astérisque 279 (2002), 180. Cohomologies $p$-adiques et applications arithmétiques, II.Google Scholar
Bosch, S., Güntzer, U. and Remmert, R., Non-Archimedean Analysis: A Systematic Approach to Rigid Analytic Geometry, Springer, Berlin, 1984.10.1007/978-3-642-52229-1Google Scholar
Caro, D., Systèmes inductifs cohérents de 𝓓-modules arithmétiques logarithmiques, stabilité par opérations cohomologiques, Doc. Math. 21 (2016), 15151606.Google Scholar
Caro, D. and Tsuzuki, N., Overholonomicity of overconvergent F-isocrystals over smooth varieties, Ann. of Math. (2) 176(2) (2012), 747813.10.4007/annals.2012.176.2.2Google Scholar
Fulton, W., A note on weakly complete algebras, Bull. Amer. Math. Soc. 75 (1969), 591593.10.1090/S0002-9904-1969-12250-0Google Scholar
Matsumura, H., Commutative Ring Theory, 2nd ed., Cambridge Studies in Advanced Mathematics, 8, Cambridge University Press, Cambridge, 1989, Translated from the Japanese by M. Reid.Google Scholar
Montagnon, C., Généralisation de la théorie arithmétique des ${\mathcal{D}}$-modules à la géométrie logarithmique, Ph.D. thesis, Université de Rennes I, 2002.Google Scholar
Schneider, P., Nonarchimedean Functional Analysis, Springer Monographs in Mathematics, Springer, Berlin, 2002.10.1007/978-3-662-04728-6Google Scholar