Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-03T08:59:37.325Z Has data issue: false hasContentIssue false

Studies on Riemannian Homogeneous Spaces

Published online by Cambridge University Press:  22 January 2016

Katsumi Nomizu*
Affiliation:
Mathematical Institute, Nagoya University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The purpose of the present paper is to give the details of the results announced in the C. R. notes [7], [8] and [9].

In I which corresponds to [7], we shall develop a method for the study of affine transformations of a Riemannian manifold and prove Lemma 5 which is fundamental for the results in I and II. This part of our work has been motivated by a result of K. Yano [12] stating that the largest connected group of affine transformations of a compact orientable Riemannian manifold consists of isometries. Our method will have further applications to some other problems concerning or involving the connected group of isometries of a Riemannian manifold (for example, [10]).

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1955

References

[1] Borel, A. and Lichnerowicz, A., Groupes d’holonomie des variétés riemanniennes, Comptes rendus, Paris, 234 (1952), 1835-1837.Google Scholar
[2] Lichnerowicz, A., Variétés pseudokählériennes à courbure de Ricci non nulle; application aux domaines bornés homogènes de C n , Comptes rendus, Pairs, 234 (1952), 1214.Google Scholar
[3] Lichnerowicz, A., Espaces homogènes kahlériens, Colloque de Géométrie Différentielle, Strasbourg, (1953), 171184.Google Scholar
[4] Morimoto, A. and Hano, J., Note on the group of affine transformations of an affinely connected manifold, Nagoya Math. Jour. 8 (1955), 8595.Google Scholar
[5] Nijenhuis, A., On the holonomy groups of linear connections, Koninkl. Nederl. Akademie van Wetenschappen, Amsterdam, Proc, Series A, 56 (1953), 233249.Google Scholar
[6] Nomizu, K., Invariant affine connections on homogeneous spaces, Amer. Journ. Math., 76 (1954), 3365.Google Scholar
[7] Nomizu, K., Sur les transformations affines d’une variété riemannienne, Comptes rendus, Paris, 237 (1953), 13081310.Google Scholar
[8] Nomizu, K., Application de l’étude des transformations affines aux espaces homogènes riemanniens, Comptes rendus, Paris, 237 (1953), 13861387.Google Scholar
[9] Nomizu, K., Sur l’algèbre d’holonomie d’un espace homogène riemannien, Comptes rendus, Paris, 238 (1954), 319321.Google Scholar
[10] Nomizu, K., Remarques sur les groupes d’holonomie et d’isotropie, Colloque de Topologie de Strasbourg (mai, 1954).Google Scholar
[11] Rham, G. de, Sur la réductibilité d’un espace de Riemann, Comment. Math. Helv., 26 (1952), 328344.CrossRefGoogle Scholar
[12] Yano, K., On harmonic and Killing vector fields, Ann. of Math. 55 (1952), 3845.Google Scholar