Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-08T00:20:10.714Z Has data issue: false hasContentIssue false

Stable vector bundles with numerically trivial Chern classes over a hyperelliptic surface

Published online by Cambridge University Press:  22 January 2016

Hiroshi Umemura*
Affiliation:
Nagoya University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In [17], Weil studied the space of representations of certain Fuchsian groups as a generalization of Jacobian variety. The theory of stable vector bundles over a curve developed by Mumford, Seshadri and others are the theory of unitary representations of Fuchsian groups. The moduli space of stable vector bundles over a curve is the space of the irreducible unitary representations of a Fuchsian group. The moduli space is studied in detail. Recently Mumford (unpubished) and Takemoto [12] introduced the notion of H-stable vector bundle over a non-singular projective algebraic surface. In this paper, we study the space of the irreducible unitary representations of the fundamental group of a hyperelliptic surface. Our view point is based on the theory of H-stable vector bundles of Takemoto [12] and [13]. We deal only with hyperelliptic surfaces. Our results should be generalized to the vector bundles over some other surfaces (See §3).

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1975

References

[1] Atiyah, M. F., Complex analytic connections in fibre bundles, Trans. Amer. Math. Soc, 85 (1957), 181207.Google Scholar
[2] Bott, R., On a theorem of Lefschetz, Mich. Math. J., 6 (1959), 211216.Google Scholar
[3] Grothendieck, A., Technique de descente et théorème d’existence en géométrie algébrique. I, Séminaire Bourbaki, 12 (1959/60), n° 190.Google Scholar
[4] Maruyama, M., Stable vector bundles on an algebraic surface, Nagoya Math. J., 58 (1975), 2568.CrossRefGoogle Scholar
[5] Matsushita, Y., Fibres holomorphes sur un tore complexe, Nagoya Math. J., 14 (1959), 124.Google Scholar
[6] Morimoto, A., Sur la classification des espaces fibres vectoriels holomorphes sur un tore complexe admettant des connections holomorphes, Nagoya Math. J., 15 (1959), 83154.Google Scholar
[7] Numford, D., Abelian varieties, Oxford University Press (1970), London.Google Scholar
[8] Narasimhan, M. S. and Seshadri, C. S., Stable and unitary vector bundles on a compact Riemann surface, Ann. of Math., 82 (1965), 540567.CrossRefGoogle Scholar
[9] Oda, T., Vector bundles on an elliptic curve, Nagoya Math. J., 43 (1971), 4172.CrossRefGoogle Scholar
[10] Seshadri, C. S., Moduli of π-vector bundles over an algebraic curve, C. I. M. E., “Questions on algebraic varieties”, Varenna 1969, 141260, Edizioni Cremonese, Roma 1970.Google Scholar
[11] Suwa, T., On hyperelliptic surfaces, J. of the Faculty of Sci. Univ. of Tokyo, 16 (19691970), 469476.Google Scholar
[12] Takemoto, F., Stable vector bundles on algebraic surfaces, Nagoya Math. J., 47 (1972), 2948.Google Scholar
[13] Takemoto, F., Stable vector bundles on algebraic surfaces II, Nagoya Math. J., 52 (1973), 173195.CrossRefGoogle Scholar
[14] Umemura, H., Fibres vectoriels positifs sur une courbe elliptique, Bull. Soc. Math. France, 100 (1972), 431433.CrossRefGoogle Scholar
[15] Umemura, H., Some results in the theory of vector bundles, Nagoya Math. J., 52 (1973), 97128.Google Scholar
[16] Umemura, H.—9, A theorem of Matsushima, Nagoya Math. J., 54 (1974), 123134.Google Scholar
[17] Weil, A., Généralisation des fonctions abéliennes, J. Math. Pures Appl., (9), 17 (1938), 4787.Google Scholar
[18] Weil, A., Variétés káhlériennes, Hermann (1958) Paris.Google Scholar