Article contents
Stable vector bundles with numerically trivial Chern classes over a hyperelliptic surface
Published online by Cambridge University Press: 22 January 2016
Extract
In [17], Weil studied the space of representations of certain Fuchsian groups as a generalization of Jacobian variety. The theory of stable vector bundles over a curve developed by Mumford, Seshadri and others are the theory of unitary representations of Fuchsian groups. The moduli space of stable vector bundles over a curve is the space of the irreducible unitary representations of a Fuchsian group. The moduli space is studied in detail. Recently Mumford (unpubished) and Takemoto [12] introduced the notion of H-stable vector bundle over a non-singular projective algebraic surface. In this paper, we study the space of the irreducible unitary representations of the fundamental group of a hyperelliptic surface. Our view point is based on the theory of H-stable vector bundles of Takemoto [12] and [13]. We deal only with hyperelliptic surfaces. Our results should be generalized to the vector bundles over some other surfaces (See §3).
- Type
- Research Article
- Information
- Copyright
- Copyright © Editorial Board of Nagoya Mathematical Journal 1975
References
- 9
- Cited by