Introduction
Let
$K$
be a nonarchimedean local field with a finite residue field
$k$
of characteristic
$p$
. Let
$\mathfrak{p}$
be the maximal ideal of the ring of integers
${\mathcal{O}}_{K}$
of
$K$
. Let
$n$
be a natural number. We write
$\text{LT}(\mathfrak{p}^{n})$
for the Lubin–Tate curve with full level
$n$
as a deformation space of formal
${\mathcal{O}}_{K}$
-modules by quasi-isogenies. Let
$D$
be the central division algebra over
$K$
of invariant
$1/2$
. Let
$\ell$
be a prime number different from
$p$
. We write
$\mathbf{C}$
for the completion of an algebraic closure of
$K$
. Then, the groups
$W_{K}$
,
$\text{GL}_{2}(K)$
and
$D^{\times }$
act on

and these actions partially realize the local Langlands correspondence and the local Jacquet–Langlands correspondence for
$\text{GL}_{2}$
. The realization of the local Langlands correspondence was proved by global automorphic methods in [Reference CarayolCa]. Since Lubin–Tate curves are purely local objects, it is desirable to have a purely local proof which only makes use of the geometry of Lubin–Tate curves.
We put

Let
$\text{LT}_{1}(\mathfrak{p}^{n})$
be the Lubin–Tate curve with level
$K_{1}(\mathfrak{p}^{n})$
as a deformation space of formal
${\mathcal{O}}_{K}$
-modules by quasi-isogenies. Then, the cohomology group

will give representations of
$W_{K}$
and
$D^{\times }$
that correspond to smooth irreducible representations of
$\text{GL}_{2}(K)$
with conductor less than or equal to
$n$
. The purpose of this paper is to study this cohomology in the case
$n=3$
. We note that
$3$
is the smallest conductor of a two-dimensional representation of
$W_{K}$
which cannot be written as an induction of a character. Such a representation is called a primitive representation.
Our method is purely local and geometric. In fact, we construct a stable model of the connected Lubin–Tate curve
$\mathbf{X}_{1}(\mathfrak{p}^{3})$
with level
$K_{1}(\mathfrak{p}^{3})$
by using the theory of semistable coverings (cf. [Reference Coleman and McMurdyCM, Section 2.3]). Our study includes the case where
$p=2$
, and in this case, primitive Galois representations of conductor
$3$
appear in the cohomology of
$\mathbf{X}_{1}(\mathfrak{p}^{3})$
. It gives a geometric understanding of a realization of the primitive Galois representations.
Our method of the calculation of the stable reduction is similar to that in [Reference Coleman and McMurdyCM]. In [Reference Coleman and McMurdyCM], Coleman and McMurdy calculate the stable reduction of the modular curve
$X_{0}(p^{3})$
under the assumption
$p\geqslant 13$
. The calculation of the stable reductions in the modular curve setting is equivalent to that in the Lubin–Tate setting where
$K=\mathbb{Q}_{p}$
. As for the calculation of the stable reduction of the modular curve
$X_{1}(p^{n})$
, it is given in [Reference Deligne and RapoportDR] if
$n=1$
.
We explain the contents of this paper. In Section 1, we recall a definition of the connected Lubin–Tate curve, and study the action of a division algebra in a general setting. In Section 2, we study the cohomology of Lubin–Tate curves as representations of
$\text{GL}_{2}(K)$
by purely local methods. By this result, we can calculate the genus of some Lubin–Tate curves. In Section 3, we construct a stable covering of the connected Lubin–Tate curve with level
$K_{1}(\mathfrak{p}^{2})$
, which is used to study a covering of
$\mathbf{X}_{1}(\mathfrak{p}^{3})$
.
In Section 4, we define several affinoid subspaces
$\mathbf{Y}_{1,2}$
,
$\mathbf{Y}_{2,1}$
and
$\mathbf{Z}_{1,1}^{0}$
of
$\mathbf{X}_{1}(\mathfrak{p}^{3})$
, and calculate their reductions. Let
$k^{\text{ac}}$
be the residue field of
$\mathbf{C}$
. We put
$q=|k|$
and

The reductions of
$\mathbf{Y}_{1,2}$
and
$\mathbf{Y}_{2,1}$
are isomorphic to the affine curve defined by
$x^{q}y-xy^{q}=1$
. This affine curve has genus
$q(q-1)/2$
, and is called the Deligne–Lusztig curve for
$\text{SL}_{2}(\mathbb{F}_{q})$
or the Drinfeld curve. Here, the genus of a curve means the genus of the smooth compactification of the normalization of the curve. The reduction
$\overline{\mathbf{Z}}_{1,1}^{0}$
of
$\mathbf{Z}_{1,1}^{0}$
is isomorphic to the affine curve defined by
$Z^{q}+X^{q^{2}-1}+X^{-(q^{2}-1)}=0$
. This affine curve has genus
$0$
and singularities at
$X\in {\mathcal{S}}_{1}$
.
Next, we analyze tubular neighborhoods
$\{{\mathcal{D}}_{\unicode[STIX]{x1D701}}\}_{\unicode[STIX]{x1D701}\in {\mathcal{S}}_{1}}$
of the singular points of
$\overline{\mathbf{Z}}_{1,1}^{0}$
. If
$q$
is odd,
${\mathcal{D}}_{\unicode[STIX]{x1D701}}$
is a basic wide open space with the underlying affinoid
$\mathbf{X}_{\unicode[STIX]{x1D701}}$
. See [Reference Coleman and McMurdyCM, 2B] for the precise definition of a basic wide open space. Roughly speaking, it is a smooth geometrically connected one-dimensional rigid space which contains an affinoid such that the reduction of the affinoid is irreducible and has at worst ordinary double points as singularities, and the complement of the affinoid is a disjoint union of open annuli. The reduction of
$\mathbf{X}_{\unicode[STIX]{x1D701}}$
is isomorphic to the Artin–Schreier affine curve of degree
$2$
defined by
$z^{q}-z=w^{2}$
. This affine curve has genus
$(q-1)/2$
.
On the other hand, if
$q$
is even, it is harder to analyze
${\mathcal{D}}_{\unicode[STIX]{x1D701}}$
, because the space
${\mathcal{D}}_{\unicode[STIX]{x1D701}}$
is not a basic wide open space. First, we find an affinoid
$\mathbf{P}_{\unicode[STIX]{x1D701}}^{0}$
. The reduction
$\overline{\mathbf{P}}_{\unicode[STIX]{x1D701}}^{0}$
of
$\mathbf{P}_{\unicode[STIX]{x1D701}}^{0}$
has genus
$0$
and singular points parametrized by
$\unicode[STIX]{x1D701}^{\prime }\in k^{\times }$
. Second, we analyze the tubular neighborhoods of singular points of
$\overline{\mathbf{P}}_{\unicode[STIX]{x1D701}}^{0}$
. As a result, we find an affinoid
$\mathbf{X}_{\unicode[STIX]{x1D701},\unicode[STIX]{x1D701}^{\prime }}$
, whose reduction
$\overline{\mathbf{X}}_{\unicode[STIX]{x1D701},\unicode[STIX]{x1D701}^{\prime }}$
is isomorphic to the affine curve defined by
$z^{2}+z=w^{3}$
. The smooth compactification of this curve is the unique supersingular elliptic curve over
$k^{\text{ac}}$
, whose
$j$
-invariant is
$0$
, and its cohomology gives a primitive Galois representation. By using these affinoid spaces, we construct a covering
${\mathcal{C}}_{1}(\mathfrak{p}^{3})$
of
$\mathbf{X}_{1}(\mathfrak{p}^{3})$
.
In Section 5, we calculate the action of
${\mathcal{O}}_{D}^{\times }$
on the reductions of the affinoid spaces in
$\mathbf{X}_{1}(\mathfrak{p}^{3})$
, where
${\mathcal{O}}_{D}$
is the ring of integers of
$D$
. In Section 6, we calculate an action of a Weil group on the reductions. In the case where
$q$
is even, we construct an
$\text{SL}_{2}(\mathbb{F}_{3})$
-Galois extension of
$K^{\text{ur}}$
, and show that the Weil action on
$\overline{\mathbf{X}}_{\unicode[STIX]{x1D701},\unicode[STIX]{x1D701}^{\prime }}$
up to translations factors through the Weil group of the constructed extension. For such a Galois extension, see also [Reference WeilWeil, 31].
In Section 7, we show that the covering
${\mathcal{C}}_{1}(\mathfrak{p}^{3})$
is semistable. To show this, we calculate the summation of the genera of the reductions of the affinoid spaces in
$\mathbf{X}_{1}(\mathfrak{p}^{3})$
, and compare it with the genus of
$\mathbf{X}_{1}(\mathfrak{p}^{3})$
. Using the constructed semistable model, we study a structure of cohomology of
$\mathbf{X}_{1}(\mathfrak{p}^{3})$
.
The dual graph of the semistable reduction of
$\mathbf{X}_{1}(\mathfrak{p}^{3})$
in the case where
$q$
is even is the following:
where
$\unicode[STIX]{x1D707}_{q^{2}-1}(k^{\text{ac}})=\{\unicode[STIX]{x1D701}_{1},\ldots ,\unicode[STIX]{x1D701}_{q^{2}-1}\}$
,
$k^{\times }=\{\unicode[STIX]{x1D701}_{1}^{\prime },\ldots ,\unicode[STIX]{x1D701}_{q-1}^{\prime }\}$
and
$X^{\text{c}}$
denotes the smooth compactification of the normalization of
$X$
for a curve
$X$
over
$k^{\text{ac}}$
. The constructed semistable model is in fact stable, except in the case where
$q=2$
. If
$q=2$
, we get the stable model by blowing down some
$\mathbb{P}^{1}$
-components.
The realization of the local Jacquet–Langlands correspondence in cohomology of Lubin–Tate curves was proved in [Reference MiedaMi] by a purely local method. Therefore, the remaining essential part of the study of the realization of the local Langlands correspondence is to study actions of Weil groups and division algebras. In the paper [Reference Imai and TsushimaIT3], we give a purely local proof of the realization of the local Langlands correspondence for representations of conductor three using the result of this paper.
Finally, we mention some recent progress on related topics according to a suggestion of a referee. In [Reference WeinsteinWein], Weinstein constructs semistable models of Lubin–Tate curves for arbitrary level in the case where the residue characteristic is not equal to two using Lubin–Tate perfectoid spaces. In [Reference Imai and TsushimaIT4] and [Reference Imai and TsushimaIT5], some of our results in this paper are generalized to arbitrary dimensional cases for Lubin–Tate perfectoid spaces. In [Reference Imai and TsushimaIT6], we construct an affinoid in the two-dimensional Lubin–Tate space such that the cohomology of the reduction of the affinoid realizes representations that are a bit more ramified than the epipelagic representations.
Notation
In this paper, we use the following notation. Let
$K$
be a nonarchimedean local field. Let
${\mathcal{O}}_{K}$
denote the ring of integers of
$K$
, and let
$k$
denote the residue field of
$K$
. Let
$p$
be the characteristic of
$k$
. We fix a uniformizer
$\unicode[STIX]{x1D71B}$
of
$K$
. Let
$q=|k|$
. We fix an algebraic closure
$K^{\text{ac}}$
of
$K$
. For any finite extension
$F$
of
$K$
in
$K^{\text{ac}}$
, let
$G_{F}$
denote the absolute Galois group of
$F$
, let
$W_{F}$
denote the Weil group of
$F$
, and let
$I_{F}$
denote the inertia subgroup of
$W_{F}$
. The completion of
$K^{\text{ac}}$
is denoted by
$\mathbf{C}$
. Let
${\mathcal{O}}_{\mathbf{C}}$
be the ring of integers of
$\mathbf{C}$
, and let
$k^{\text{ac}}$
be the residue field of
$\mathbf{C}$
. For an element
$a\in {\mathcal{O}}_{\mathbf{C}}$
, we write
$\bar{a}$
for the image of
$a$
by the reduction map
${\mathcal{O}}_{\mathbf{C}}\rightarrow k^{\text{ac}}$
. Let
$v(\cdot )$
denote the valuation of
$\mathbf{C}$
such that
$v(\unicode[STIX]{x1D71B})=1$
. Let
$K^{\text{ur}}$
denote the maximal unramified extension of
$K$
in
$K^{\text{ac}}$
. The completion of
$K^{\text{ur}}$
is denoted by
$\widehat{K}^{\text{ur}}$
. For
$a,b\in \mathbf{C}$
and a rational number
$\unicode[STIX]{x1D6FC}\in \mathbb{Q}_{{\geqslant}0}$
, we write
$a\equiv b\;(\text{mod}~\unicode[STIX]{x1D6FC})$
if we have
$v(a-b)\geqslant \unicode[STIX]{x1D6FC}$
, and
$a\equiv b\;(\text{mod}~\unicode[STIX]{x1D6FC}+)$
if we have
$v(a-b)>\unicode[STIX]{x1D6FC}$
. For a curve
$X$
over
$k^{\text{ac}}$
, we denote by
$X^{c}$
the smooth compactification of the normalization of
$X$
, and the genus of
$X$
means the genus of
$X^{\text{c}}$
. For an affinoid
$\mathbf{X}$
, we write
$\overline{\mathbf{X}}$
for its reduction. The category of sets is denoted by
$\mathbf{Set}$
. For a representation
$\unicode[STIX]{x1D70F}$
of a group, the dual representation of
$\unicode[STIX]{x1D70F}$
is denoted by
$\unicode[STIX]{x1D70F}^{\ast }$
. We take rational powers of
$\unicode[STIX]{x1D71B}$
compatibly as needed.
1 Preliminaries
1.1 The universal deformation
Let
$\unicode[STIX]{x1D6F4}$
denote a formal
${\mathcal{O}}_{K}$
-module of dimension
$1$
and height
$2$
over
$k^{\text{ac}}$
, which is unique up to isomorphism. Let
$n$
be a natural number. We define
$K_{1}(\mathfrak{p}^{n})$
as in the introduction. In the following, we define the connected Lubin–Tate curve
$\mathbf{X}_{1}(\mathfrak{p}^{n})$
with level
$K_{1}(\mathfrak{p}^{n})$
.
Let
${\mathcal{C}}$
be the category of Noetherian complete local
${\mathcal{O}}_{\widehat{K}^{\text{ur}}}$
-algebras with residue field
$k^{\text{ac}}$
. For
$A\in {\mathcal{C}}$
, a formal
${\mathcal{O}}_{K}$
-module
${\mathcal{F}}=\text{Spf}\,A[[X]]$
over
$A$
and an
$A$
-valued point
$P$
of
${\mathcal{F}}$
, the corresponding element of the maximal ideal of
$A$
is denoted by
$x(P)$
. We consider the functor

where
${\mathcal{F}}$
is a formal
${\mathcal{O}}_{K}$
-module over
$A$
with an isomorphism
$\unicode[STIX]{x1D704}:\unicode[STIX]{x1D6F4}\simeq {\mathcal{F}}\otimes _{A}k^{\text{ac}}$
and
$P$
is a
$\unicode[STIX]{x1D71B}^{n}$
-torsion point of
${\mathcal{F}}$
such that

in
$A[[X]]$
. This functor is represented by a regular local ring
${\mathcal{R}}_{1}(\mathfrak{p}^{n})$
by [Reference Drinfel’dDr, Section 4.B) Lemma]. We write
$\mathfrak{X}_{1}(\mathfrak{p}^{n})$
for
$\text{Spf}\,{\mathcal{R}}_{1}(\mathfrak{p}^{n})$
. Its generic fiber is denoted by
$\mathbf{X}_{1}(\mathfrak{p}^{n})$
, which we call the connected Lubin–Tate curve with level
$K_{1}(\mathfrak{p}^{n})$
. The space
$\mathbf{X}_{1}(\mathfrak{p}^{n})$
is a rigid analytic curve over
$\widehat{K}^{\text{ur}}$
. We can define the Lubin–Tate curve
$\text{LT}_{1}(\mathfrak{p}^{n})$
with level
$n$
by changing
${\mathcal{C}}$
to be the category of
${\mathcal{O}}_{\widehat{K}^{\text{ur}}}$
-algebras where
$\unicode[STIX]{x1D71B}$
is nilpotent, and
$\unicode[STIX]{x1D704}$
to be a quasi-isogeny
$\unicode[STIX]{x1D6F4}\otimes _{k^{\text{ac}}}A/\unicode[STIX]{x1D71B}A\rightarrow {\mathcal{F}}\otimes _{A}A/\unicode[STIX]{x1D71B}A$
. We consider
$\text{LT}_{1}(\mathfrak{p}^{n})$
as a rigid analytic curve over
$\widehat{K}^{\text{ur}}$
.
The ring
${\mathcal{R}}_{1}(1)$
is isomorphic to the ring of formal power series
${\mathcal{O}}_{\widehat{K}^{\text{ur}}}[[u]]$
. We simply write
${\mathcal{B}}(1)$
for
$\text{Spf}\,{\mathcal{O}}_{\widehat{K}^{\text{ur}}}[[u]]$
. Let
$B(1)$
denote an open unit ball such that
$B(1)(\mathbf{C})=\{u\in \mathbf{C}\mid v(u)>0\}$
. The generic fiber of
${\mathcal{B}}(1)$
is equal to
$B(1)$
. Then, the space
$\mathbf{X}_{1}(1)$
is identified with
$B(1)$
. Let
${\mathcal{F}}^{\text{univ}}$
denote the universal formal
${\mathcal{O}}_{K}$
-module over
$\mathfrak{X}_{1}(1)$
.
In this subsection, we choose a parametrization of
$\mathfrak{X}_{1}(1)\simeq {\mathcal{B}}(1)$
such that the universal formal
${\mathcal{O}}_{K}$
-module has a simple form. Let
${\mathcal{F}}$
be a formal
${\mathcal{O}}_{K}$
-module of dimension
$1$
over a flat
${\mathcal{O}}_{K}$
-algebra
$R$
. For a nontrivial invariant differential
$\unicode[STIX]{x1D714}$
on
${\mathcal{F}}$
, a logarithm of
${\mathcal{F}}$
means a unique isomorphism
$F:{\mathcal{F}}\stackrel{{\sim}}{\rightarrow }\mathbb{G}_{a}$
over
$R\otimes K$
with
$dF=\unicode[STIX]{x1D714}$
(cf. [Reference Gross and HopkinsGH, 3]). In the following, we always take an invariant differential
$\unicode[STIX]{x1D714}$
on
${\mathcal{F}}$
so that a logarithm
$F$
has the following form:

Let
$F(X)=\sum _{i\geqslant 0}f_{i}X^{q^{i}}\in K[[u,X]]$
be the universal logarithm over
${\mathcal{O}}_{K}[[u]]$
. By [Reference Gross and HopkinsGH, (5.5), (12.3), Proposition 12.10], the coefficients
$\{f_{i}\}_{i\geqslant 0}$
satisfy
$f_{0}=1$
and
$\unicode[STIX]{x1D71B}f_{i}=\sum _{0\leqslant j\leqslant i-1}f_{j}v_{i-j}^{q^{j}}$
for
$i\geqslant 1$
, where
$v_{1}=u$
,
$v_{2}=1$
and
$v_{i}=0$
for
$i\geqslant 3$
. Hence, we have the following:

By [Reference Gross and HopkinsGH, Proposition 5.7] or [Reference HazewinkelHa, 21.5], if we set

for
$a\in {\mathcal{O}}_{K}$
, it is known that these power series have coefficients in
${\mathcal{O}}_{K}[[u]]$
and define the universal formal
${\mathcal{O}}_{K}$
-module
${\mathcal{F}}^{\text{univ}}$
over
${\mathcal{O}}_{\widehat{K}^{\text{ur}}}[[u]]$
of dimension
$1$
and height
$2$
with logarithm
$F(X)$
. We have the following approximation formula for
$[\unicode[STIX]{x1D71B}]_{\text{u}}(X)$
.
Lemma 1.1. We have the following congruence:

Proof. This follows from a direct computation using the relation
$F([\unicode[STIX]{x1D71B}]_{{\mathcal{F}}^{\text{univ}}}(X))=\unicode[STIX]{x1D71B}F(X)$
and (1.1).◻
In the following,
${\mathcal{F}}^{\text{univ}}$
means the universal formal
${\mathcal{O}}_{K}$
-module with the identification
$\mathfrak{X}_{1}(1)\simeq {\mathcal{B}}(1)$
given by (1.2), and we simply write
$[a]_{\text{u}}$
for
$[a]_{{\mathcal{F}}^{\text{univ}}}$
. The reduction of (1.2) gives a simple model of
$\unicode[STIX]{x1D6F4}$
such that

We put

Then, there is a natural identification

that is compatible with the identification
$\mathfrak{X}_{1}(1)\simeq {\mathcal{B}}(1)$
. The Lubin–Tate curve
$\mathbf{X}_{1}(\mathfrak{p}^{n})$
is identified with the generic fiber of the right-hand side of (1.4). We set
$X_{i}=[\unicode[STIX]{x1D71B}^{n-i}]_{\text{u}}(X_{n})$
for
$1\leqslant i\leqslant n-1$
. We write
$\mathfrak{X}(1)$
for
$\mathfrak{X}_{1}(1)$
.
1.2 Action of a division algebra on
$\mathfrak{X}_{1}(\mathfrak{p}^{n})$
Let
$D$
be the central division algebra over
$K$
of invariant
$1/2$
. We write
${\mathcal{O}}_{D}$
for the ring of integers of
$D$
. In this subsection, we recall the left action of
${\mathcal{O}}_{D}^{\times }$
on the space
$\mathfrak{X}_{1}(\mathfrak{p}^{n})$
.
Let
$K_{2}$
be the unramified quadratic extension of
$K$
. Let
$k_{2}$
be the residue field of
$K_{2}$
, and let
$\unicode[STIX]{x1D70E}\in \text{Gal}(K_{2}/K)$
be the nontrivial element. The ring
${\mathcal{O}}_{D}$
has the following description:
${\mathcal{O}}_{D}={\mathcal{O}}_{K_{2}}\oplus \unicode[STIX]{x1D711}{\mathcal{O}}_{K_{2}}$
, with
$\unicode[STIX]{x1D711}^{2}=\unicode[STIX]{x1D71B}$
and
$a\unicode[STIX]{x1D711}=\unicode[STIX]{x1D711}a^{\unicode[STIX]{x1D70E}}$
for
$a\in {\mathcal{O}}_{K_{2}}$
. We define an action of
${\mathcal{O}}_{D}$
on
$\unicode[STIX]{x1D6F4}$
by
$\unicode[STIX]{x1D701}(X)=\bar{\unicode[STIX]{x1D701}}X$
for
$\unicode[STIX]{x1D701}\in \unicode[STIX]{x1D707}_{q^{2}-1}({\mathcal{O}}_{K_{2}})$
and
$\unicode[STIX]{x1D711}(X)=X^{q}$
. Then, this gives an isomorphism
${\mathcal{O}}_{D}\simeq \text{End}(\unicode[STIX]{x1D6F4})$
by [Reference Gross and HopkinsGH, Proposition 13.10].
Let
$d=d_{1}+\unicode[STIX]{x1D711}d_{2}\in {\mathcal{O}}_{D}^{\times }$
, where
$d_{1}\in {\mathcal{O}}_{K_{2}}^{\times }$
and
$d_{2}\in {\mathcal{O}}_{K_{2}}$
. By the definition of the action of
${\mathcal{O}}_{D}$
on
$\unicode[STIX]{x1D6F4}$
, we have

We take a lifting
$\tilde{d}(X)\in {\mathcal{O}}_{K_{2}}[[X]]$
of
$d(X)\in k_{2}[[X]]$
. Let
${\mathcal{F}}_{\tilde{d}}$
be the formal
${\mathcal{O}}_{K}$
-module defined by

for
$a\in {\mathcal{O}}_{K}$
. Then, we have an isomorphism

By [Reference Gross and HopkinsGH, Proposition 14.7], the formal
${\mathcal{O}}_{K}$
-module
${\mathcal{F}}_{\tilde{d}}$
with

gives an isomorphism

which is independent of the choice of a lifting
$\tilde{d}$
, such that there is the unique isomorphism

satisfying
$j(X)\equiv X\hspace{0.2em}\bmod \hspace{0.2em}(\unicode[STIX]{x1D71B},u)$
, where
$d^{\ast }{\mathcal{F}}^{\text{univ}}$
denotes the pullback of
${\mathcal{F}}^{\text{univ}}$
over
$\mathfrak{X}(1)$
by the map (1.6). Hence, we have

On the other hand, we have the following isomorphism:

Furthermore, we consider the following isomorphism under the identification (1.4):

which depends only on
$d$
as in [Reference Gross and HopkinsGH, Proposition 14.7]. We put

We define a left action of
$d$
on
$\mathfrak{X}_{1}(\mathfrak{p}^{n})$
by

Then, this action coincides with
$\unicode[STIX]{x1D713}_{d}$
by the definition.
By (1.5), we have

in
${\mathcal{O}}_{K_{2}}[[X]]$
. We use the following lemma later to compute the
${\mathcal{O}}_{D}^{\times }$
-action on the stable reduction of
$\mathbf{X}_{1}(\mathfrak{p}^{3})$
.
Lemma 1.2. We assume
$v(u)=1/(2q)$
. Let
$d=d_{1}+\unicode[STIX]{x1D711}d_{2}\in {\mathcal{O}}_{D}^{\times }$
. We set
$u^{\prime }=d(u)$
. We change variables as
$u=\unicode[STIX]{x1D71B}^{1/(2q)}\tilde{u}$
and
$u^{\prime }=\unicode[STIX]{x1D71B}^{1/(2q)}\tilde{u} ^{\prime }$
. Then, we have the following:


Proof. We set
$d^{-1}=d_{1}^{\prime }+\unicode[STIX]{x1D711}d_{2}^{\prime }$
. Then,

First, we prove (1.10). If
$v(u)=1/(2q)$
, the function
$w(u)$
in [Reference Gross and HopkinsGH, (25.11)] is well approximated by a function
$\unicode[STIX]{x1D71B}u(\unicode[STIX]{x1D71B}+u^{q+1})^{-1}$
. By [Reference Gross and HopkinsGH, (25.13)], we have

Hence, we acquire the following by
$u=\unicode[STIX]{x1D71B}^{1/(2q)}\tilde{u}$
and
$u^{\prime }=\unicode[STIX]{x1D71B}^{1/(2q)}\tilde{u} ^{\prime }$
:

By taking an inverse of the congruence (1.12), we obtain

Now, we set
$\tilde{u} ^{\prime }-d_{1}^{-(q-1)}\tilde{u} =\unicode[STIX]{x1D71B}^{1/(2q)}x$
. By substituting this into (1.13) and dividing it by
$\unicode[STIX]{x1D71B}^{1/2}$
, we obtain

Since
$x$
is an analytic function of
$\tilde{u}$
, a congruence
$x\equiv d_{1}^{1-2q}d_{2}\tilde{u} ^{2}\;(\text{mod}~0+)$
must hold. Hence, we have

using
$\tilde{u} ^{\prime }-d_{1}^{q-1}\tilde{u} =\unicode[STIX]{x1D71B}^{1/(2q)}x$
. This implies (1.10), because
$u^{\prime }$
is an analytic function of
$u$
.
By Lemma 1.1, (1.7) and (1.9), we have

Hence, the assertion (1.11) follows from (1.10) and
$j^{-1}(X)\equiv X\hspace{0.2em}\bmod \hspace{0.2em}(\unicode[STIX]{x1D71B},u)$
.◻
2 Cohomology of Lubin–Tate curve
Let
$\ell$
be a prime number different from
$p$
. We take an algebraic closure
$\overline{\mathbb{Q}}_{\ell }$
of
$\mathbb{Q}_{\ell }$
. Let
$\text{LT}(\mathfrak{p}^{n})$
be the Lubin–Tate curve with full level
$n$
over
$\widehat{K}^{\text{ur}}$
(cf. [Reference DatDa, 3.2]). We put

for any nonnegative integer
$i$
, where
$\text{LT}(\mathfrak{p}^{n})/\unicode[STIX]{x1D71B}^{\mathbb{Z}}$
denotes the quotient of
$\text{LT}(\mathfrak{p}^{n})$
by the action of
$\unicode[STIX]{x1D71B}^{\mathbb{Z}}\subset D^{\times }$
. Then, we can define an action of
$\text{GL}_{2}(K)\times D^{\times }\times W_{K}$
on
$H_{\text{LT},\unicode[STIX]{x1D71B}}^{i}$
for a nonnegative integer
$i$
(cf. [Reference DatDa, 3.2, 3.3]).
We write
$\text{Irr}(D^{\times },\overline{\mathbb{Q}}_{\ell })$
for the set of isomorphism classes of irreducible smooth representations of
$D^{\times }$
over
$\overline{\mathbb{Q}}_{\ell }$
, and
$\text{Disc}(\text{GL}_{2}(K),\overline{\mathbb{Q}}_{\ell })$
for the set of isomorphism classes of irreducible discrete series representations of
$\text{GL}_{2}(K)$
over
$\overline{\mathbb{Q}}_{\ell }$
. Let

be the local Jacquet–Langlands correspondence. We denote by
$\text{LJ}$
the inverse of
$\text{JL}$
. For an irreducible smooth representation
$\unicode[STIX]{x1D70B}$
of
$\text{GL}_{2}(K)$
, let
$\unicode[STIX]{x1D714}_{\unicode[STIX]{x1D70B}}$
denote the central character of
$\unicode[STIX]{x1D70B}$
. We write
$\text{St}$
for the Steinberg representation of
$\text{GL}_{2}(K)$
.
The following fact is well known as a corollary of the Deligne–Carayol conjecture. Here, we give a purely local proof of this fact.
Proposition 2.1. We have isomorphisms

as representations of
$\text{GL}_{2}(K)$
, where
$\unicode[STIX]{x1D70B}$
runs through irreducible cuspidal representations of
$\text{GL}_{2}(K)$
such that
$\unicode[STIX]{x1D714}_{\unicode[STIX]{x1D70B}}(\unicode[STIX]{x1D71B})=1$
, and
$\unicode[STIX]{x1D712}$
runs through characters of
$K^{\times }$
satisfying
$\unicode[STIX]{x1D712}(\unicode[STIX]{x1D71B}^{2})=1$
.
Proof. First, we show the second isomorphism. Let
$\mathbf{X}(\mathfrak{p}^{n})$
be the connected Lubin–Tate curve with full level
$n$
over
$\widehat{K}^{\text{ur}}$
(cf. [Reference StrauchSt2, 2.1]). We put

Then,
$\text{GL}_{2}(K)^{0}$
acts on
$H_{\mathbf{X}}^{2}$
. By [Reference StrauchSt2, Theorem 4.4(i)], we have

as representations of
$\text{GL}_{2}({\mathcal{O}}_{K})$
, where
$\unicode[STIX]{x1D712}$
runs through characters of
${\mathcal{O}}_{K}^{\times }$
. Let
$H$
be the kernel of
$\text{GL}_{2}(K)^{0}\rightarrow \text{Aut}(H_{\mathbf{X}}^{2})$
. Then,
$H=\text{SL}_{2}(K)$
, because a normal subgroup of
$\text{GL}_{2}(K)^{0}$
containing
$\text{SL}_{2}({\mathcal{O}}_{K})$
is
$\text{SL}_{2}(K)$
by [Reference DeligneDe, Lemme 2.2.5(iii)]. Hence, we see that (2.1) is an isomorphism as representations of
$\text{GL}_{2}(K)^{0}$
. The second isomorphism follows from this, because we have

Next, we show the first isomorphism. By [Reference MiedaMi, Definition 6.2 and Theorem 6.6], the cuspidal part of
$H_{\text{LT},\unicode[STIX]{x1D71B}}^{1}$
is

Here, we note that the characteristic of a local field is assumed to be zero in [Reference MiedaMi], but the same proof works in the equal characteristic case. By [Reference FarguesFar2, Théorème 4.3] and the Faltings–Fargues isomorphism (cf. [Reference FaltingsFal] and [Reference Fargues, Genestier and LafforgueFGL]), we see that the noncuspidal part of
$H_{\text{LT},\unicode[STIX]{x1D71B}}^{1}$
is the Zelevinsky dual of
$H_{\text{LT},\unicode[STIX]{x1D71B}}^{2}$
. Therefore, we have the first isomorphism.◻
3 Stable covering of Lubin–Tate curve with level two
In this section, we construct a stable covering of
$\mathbf{X}_{1}(\mathfrak{p}^{2})$
. Let
$(u,X_{2})$
be the parameter of
$\mathbf{X}_{1}(\mathfrak{p}^{2})$
given by the identification (1.4).
Let
$\mathbf{Y}_{1,1}$
,
$\mathbf{W}_{0}$
,
$\mathbf{W}_{k^{\times }}$
,
$\mathbf{W}_{\infty ,1}$
,
$\mathbf{W}_{\infty ,2}$
and
$\mathbf{W}_{\infty ,3}$
be the subspaces of
$\mathbf{X}_{1}(\mathfrak{p}^{2})$
defined by the following conditions.

We put

Note that we have

Proposition 3.1. The Lubin–Tate curve
$\mathbf{X}_{1}(\mathfrak{p}^{2})$
is a basic wide open space with underlying affinoid
$\mathbf{Y}_{1,1}$
. Further,
$\mathbf{W}_{0}$
and
$\mathbf{W}_{\infty }$
are open annuli, and
$\mathbf{W}_{k^{\times }}$
is a disjoint union of
$q-1$
open annuli.
Proof. This is proved in [Reference Imai and TsushimaIT1] by direct calculations without cohomological arguments. Here, we sketch another proof based on arguments in this paper.
First, we note that
${\mathcal{X}}_{1}(1)$
is a good formal model of
$\mathbf{X}_{1}(1)$
. Then, we can show that
$\mathbf{X}_{1}(\mathfrak{p})$
is isomorphic to an open annulus by a cohomological argument as in the proof of Theorem 7.14 using the natural level-lowering map
$\mathbf{X}_{1}(\mathfrak{p})\rightarrow \mathbf{X}_{1}(1)$
.
Next, we can see that the reduction of
$\mathbf{Y}_{1,1}$
is isomorphic to the affine curve defined by
$x^{q}y-xy^{q}=1$
by a calculation as in the proof of Proposition 4.2 (cf. [Reference Imai and TsushimaIT1, Section 3.1]). Then, we can prove the claim by a similar argument to that above using the natural level-lowering map
$\mathbf{X}_{1}(\mathfrak{p}^{2})\rightarrow \mathbf{X}_{1}(\mathfrak{p})$
.◻
4 Reductions of affinoid spaces in
$\mathbf{X}_{1}(\mathfrak{p}^{3})$
4.1 Definitions of several subspaces in
$\mathbf{X}_{1}(\mathfrak{p}^{3})$
In this subsection, we define several subspaces of
$\mathbf{X}_{1}(\mathfrak{p}^{3})$
. Let
$(u,X_{3})$
be the parameter of
$\mathbf{X}_{1}(\mathfrak{p}^{3})$
given by the identification (1.4).
Let
$\mathbf{Y}_{1,2}$
,
$\mathbf{Y}_{2,1}$
and
$\mathbf{Z}_{1,1}^{0}$
be the subspaces of
$\mathbf{X}_{1}(\mathfrak{p}^{3})$
defined by the following conditions.

We write down the following possible cases for
$(u,X_{1},X_{2})$
:

Next, we consider the following possible cases for
$(X_{2},X_{3})$
:

Lemma 4.1. For
$2\leqslant i\leqslant 6$
in (4.1) and
$2^{\prime }\leqslant j^{\prime }\leqslant 4^{\prime }$
in (4.2), the case
$i$
and
$j^{\prime }$
does not happen.
Proof. This is an easy exercise. ◻
Let
$\mathbf{W}_{i,j^{\prime }}$
be the subspace of
$\mathbf{X}_{1}(\mathfrak{p}^{3})$
defined by the conditions
$1\leqslant i\leqslant 6$
in (4.1) and
$1^{\prime }\leqslant j^{\prime }\leqslant 4^{\prime }$
in (4.2). We note that
$\mathbf{W}_{3,1^{\prime }}=\mathbf{Y}_{1,2}$
and
$\mathbf{W}_{1,4^{\prime }}=\mathbf{Y}_{2,1}$
. Let
$\mathbf{W}_{1,1^{\prime }}^{+}$
and
$\mathbf{W}_{1,1^{\prime }}^{-}$
be the subspaces of
$\mathbf{W}_{1,1^{\prime }}$
defined by
$1/(2q)<v(u)<1/(q+1)$
and
$1/(q(q+1))<v(u)<1/(2q)$
respectively.
4.2 Reductions of the affinoid spaces
$\mathbf{Y}_{1,2}$
and
$\mathbf{Y}_{2,1}$
In this subsection, we compute the reductions of the affinoid spaces
$\mathbf{Y}_{1,2}$
and
$\mathbf{Y}_{2,1}$
. The reductions of
$\mathbf{Y}_{2,1}$
and
$\mathbf{Y}_{1,2}$
are isomorphic to the affine curve defined by
$x^{q}y-xy^{q}=1$
. These curves have genus
$q(q-1)/2$
.
Proposition 4.2. The reduction of
$\mathbf{Y}_{1,2}$
is isomorphic to the affine curve defined by
$x^{q}y-xy^{q}=1$
.
Proof. We change variables as
$u=\unicode[STIX]{x1D71B}^{1/(q+1)}\tilde{u}$
,
$X_{1}=\unicode[STIX]{x1D71B}^{q/(q^{2}-1)}x_{1}$
,
$X_{2}=\unicode[STIX]{x1D71B}^{1/(q(q^{2}-1))}x_{2}$
and
$X_{3}=\unicode[STIX]{x1D71B}^{1/(q^{3}(q^{2}-1))}x_{3}$
. By Lemma 1.1, we have

Then, we have
$\tilde{u} =-x_{1}^{-(q-1)}+F_{0}(\tilde{u} ,x_{1})$
for some function
$F_{0}(\tilde{u} ,x_{1})$
satisfying
$v(F_{0}(\tilde{u} ,x_{1}))>v(\tilde{u} )$
. Substituting
$\tilde{u} =-x_{1}^{-(q-1)}+F_{0}(\tilde{u} ,x_{1})$
into
$F_{0}(\tilde{u} ,x_{1})$
and repeating it, we see that
$\tilde{u}$
is written as a function of
$x_{1}$
. Similarly, by
$x_{2}\equiv x_{3}^{q^{2}}\;(\text{mod}~0+)$
, we can see that
$x_{2}$
is written as a function of
$x_{1}$
and
$x_{3}$
. By (4.3), we acquire

By setting
$1+x_{1}^{-1}x_{3}^{q^{2}}=x_{3}^{q^{3}}t_{1}^{-1}$
and substituting this into (4.4), we obtain
$t_{1}^{q}\equiv x_{1}\;(\text{mod}~0+)$
and hence
$(1+x_{3}^{q}t_{1}^{-1})^{q}\equiv x_{3}^{q^{3}}t_{1}^{-1}\;(\text{mod}~0+)$
. By setting
$1+x_{3}^{q}t_{1}^{-1}=x_{3}^{q^{2}}t_{2}^{-1}$
, we obtain
$t_{2}^{q}\equiv t_{1}\;(\text{mod}~0+)$
. Hence,

Finally, by setting
$x=x_{3}$
and
$1+x_{3}t_{2}^{-1}=x_{3}^{q}y$
, we acquire
$y^{q}\equiv t_{2}^{-1}\;(\text{mod}~0+)$
. Hence, we have
$x^{q}y-xy^{q}\equiv 1\;(\text{mod}~0+)$
. Note that

which we will use later. ◻
We put

for
$1\leqslant i\leqslant 4$
. We choose an element
$c_{0}$
such that
$c_{0}^{q}-\unicode[STIX]{x1D6FE}_{1}^{2}c_{0}+1=0$
. Note that we have
$c_{0}\equiv -1\;(\text{mod}~0+)$
. Further, we choose a
$q$
th root
$c_{0}^{1/q}$
of
$c_{0}$
.
Proposition 4.3. The reduction of the space
$\mathbf{Y}_{2,1}$
is isomorphic to the affine curve defined by
$x^{q}y-xy^{q}=1$
.
Proof. We change variables as

By Lemma 1.1, we have



By (4.6) and (4.8), we can see that
$\tilde{u}$
is written as a function of
$x_{1}$
, and that
$x_{2}$
is written as a function of
$x_{1}$
and
$x_{3}$
. We define a parameter
$t$
by

We note that
$v(t)=0$
. By considering
$x_{1}^{-1}\times$
(4.7), we have

By substituting (4.9) into the left-hand side of the congruence (4.10), and dividing it by
$\unicode[STIX]{x1D6FE}_{1}^{2}x_{2}^{q^{2}}$
, we acquire

By this congruence, we can see that
$x_{1}$
is written as a function of
$t$
and
$x_{3}$
. By considering
$x_{1}^{-1}\times$
(4.8), we acquire

by (4.9). Substituting (4.11) into (4.12), we have

By (4.9) and
$c_{0}\equiv -1\;(\text{mod}~0+)$
, we have
$x_{2}\equiv -x_{1}\;(\text{mod}~0+)$
. Therefore, we acquire

by (4.6) and (4.8). In particular, we obtain
$v(x_{2}+x_{3})=0$
. We introduce a new parameter
$t_{1}$
as

Substituting this into the left-hand side of the congruence (4.13), and dividing it by
$-\unicode[STIX]{x1D6FE}_{2}^{2}x_{2}^{-q(q-1)}(x_{2}+x_{3})^{q^{2}}$
, we acquire
$t\equiv t_{1}^{q}\;(\text{mod}~0+)$
. By this congruence, we can see that
$t$
is written as a function of
$t_{1}$
and
$x_{3}$
. By (4.14), we obtain

using
$t\equiv t_{1}^{q}\;(\text{mod}~0+)$
and
$x_{1}\equiv t^{q}\;(\text{mod}~0+)$
. Hence, by setting
$x=t_{1}^{-1}$
and
$~y=t_{1}^{q}(1+x_{3}t_{1}^{-1})$
, we acquire
$x^{q}y-yx^{q}\equiv 1\;(\text{mod}~0+)$
.◻
4.3 Reduction of the affinoid space
$\mathbf{Z}_{1,1}^{0}$
In this subsection, we calculate the reduction of the affinoid space
$\mathbf{Z}_{1,1}^{0}$
. We define
${\mathcal{S}}_{1}$
as in the introduction. The reduction
$\overline{\mathbf{Z}}_{1,1}^{0}$
is isomorphic to the affine curve defined by
$Z^{q}+x_{3}^{q^{2}-1}+x_{3}^{-(q^{2}-1)}=0$
. This affine curve has genus
$0$
and singularities at
$x_{3}\in {\mathcal{S}}_{1}$
.
We put

for
$1\leqslant i\leqslant 4$
. We change variables as
$u=\unicode[STIX]{x1D714}_{1}^{q-1}\tilde{u}$
,
$X_{1}=\unicode[STIX]{x1D714}_{1}^{2q-1}x_{1}$
,
$X_{2}=\unicode[STIX]{x1D714}_{1}x_{2}$
and
$X_{3}=\unicode[STIX]{x1D714}_{3}x_{3}$
. By Lemma 1.1, we have



Note that we have
$v(\unicode[STIX]{x1D6FE}_{1}^{2})>1/2$
if
$q\neq 2$
. By (4.15) and (4.17), we can see that
$\tilde{u}$
is written as a function of
$x_{1}$
, and that
$x_{2}$
is written as a function of
$x_{1}$
and
$x_{3}$
. We define a parameter
$t$
by

By considering
$x_{1}^{-1}\times$
(4.16), we acquire

by (4.15). Substituting (4.18) into (4.19), and dividing it by
$\unicode[STIX]{x1D6FE}_{1}x_{2}^{q^{2}}$
, we obtain

Therefore, we have
$v(t)=0$
. By considering
$x_{1}^{-1}\times$
(4.17), we acquire

by (4.15), (4.18) and (4.20). We define a parameter
$Z_{0}$
by

We note that
$v(Z_{0})\geqslant 0$
. Substituting this into (4.21), and dividing it by
$\unicode[STIX]{x1D6FE}_{2}$
, we obtain

By (4.22) and (4.23), we acquire

We introduce a new parameter
$Z$
as

We note that
$v(Z)\geqslant 0$
. Substituting this into the left-hand side of the congruence (4.24), and dividing it by
$\unicode[STIX]{x1D6FE}_{3}(x_{2}/x_{3})^{q}$
, we acquire

By substituting (4.25) into (4.26), we obtain

by (4.17), (4.20) and (4.22). Note that we have
$v(\unicode[STIX]{x1D6FE}_{3}^{q^{2}-q-1})>\unicode[STIX]{x1D716}_{3}$
, if
$q\neq 2$
.
Proposition 4.4. The reduction of the space
$\mathbf{Z}_{1,1}^{0}$
is isomorphic to the affine curve defined by
$Z^{q}+x_{3}^{q^{2}-1}+x_{3}^{-(q^{2}-1)}=0$
. This affine curve has genus
$0$
and singularities at
$x_{3}\in {\mathcal{S}}_{1}$
.
Proof. The required assertion follows from the congruence (4.27) modulo
$0+$
.◻
Definition 4.5.
-
(1) For any
$\unicode[STIX]{x1D701}\in {\mathcal{S}}_{1}$ , we define a subspace
$$\begin{eqnarray}{\mathcal{D}}_{\unicode[STIX]{x1D701}}\subset \mathbf{Z}_{1,1}^{0}\times _{\widehat{K}^{\text{ur}}}\widehat{K}^{\text{ur}}(\unicode[STIX]{x1D714}_{3})\end{eqnarray}$$
$\bar{x}_{3}=\unicode[STIX]{x1D701}$ . We call the space
${\mathcal{D}}_{\unicode[STIX]{x1D701}}$ a singular residue class of
$\mathbf{Z}_{1,1}^{0}$ .
-
(2) We define a subspace
$$\begin{eqnarray}\mathbf{Z}_{1,1}\subset \mathbf{Z}_{1,1}^{0}\times _{\widehat{K}^{\text{ur}}}\widehat{K}^{\text{ur}}(\unicode[STIX]{x1D714}_{3})\end{eqnarray}$$
$\mathbf{Z}_{1,1}^{0}\times _{\widehat{K}^{\text{ur}}}\widehat{K}^{\text{ur}}(\unicode[STIX]{x1D714}_{3})\backslash \bigcup _{\unicode[STIX]{x1D701}\in {\mathcal{S}}_{1}}{\mathcal{D}}_{\unicode[STIX]{x1D701}}$ .
Proposition 4.6. The reduction of the space
$\mathbf{Z}_{1,1}$
is isomorphic to the affine curve defined by
$Z^{q}+x_{3}^{q^{2}-1}+x_{3}^{-(q^{2}-1)}=0$
with
$x_{3}\notin {\mathcal{S}}_{1}$
.
Proof. This follows from Proposition 4.4. ◻
4.4 Analysis of the singular residue classes of
$\mathbf{Z}_{1,1}^{0}$
In this subsection, we analyze the singular residue classes
$\{{\mathcal{D}}_{\unicode[STIX]{x1D701}}\}_{\unicode[STIX]{x1D701}\in {\mathcal{S}}_{1}}$
of
$\mathbf{Z}_{1,1}^{0}$
. If
$q$
is odd, the space
${\mathcal{D}}_{\unicode[STIX]{x1D701}}$
is a basic wide open space with an underlying affinoid
$\mathbf{X}_{\unicode[STIX]{x1D701}}$
, whose reduction
$\overline{\mathbf{X}}_{\unicode[STIX]{x1D701}}$
is isomorphic to the affine curve defined by
$z^{q}-z=w^{2}$
. On the other hand, if
$q$
is even, the situation is slightly complicated, because the space
${\mathcal{D}}_{\unicode[STIX]{x1D701}}$
is not basic wide open. Hence, we have to cover
${\mathcal{D}}_{\unicode[STIX]{x1D701}}$
by smaller basic wide open spaces. As a result, in
${\mathcal{D}}_{\unicode[STIX]{x1D701}}$
, we find an affinoid
$\mathbf{P}_{\unicode[STIX]{x1D701}}^{0}$
, whose reduction is isomorphic to the affine curve defined by
$z_{f+1}^{2}=w_{1}(w_{1}^{q-1}-1)^{2}$
. This affine curve has
$q-1$
singular points at
$w_{1}\in k^{\times }$
. Then, by analyzing the tubular neighborhoods of these singular points, we find an affinoid
$\mathbf{X}_{\unicode[STIX]{x1D701},\unicode[STIX]{x1D701}^{\prime }}\subset \mathbf{P}_{\unicode[STIX]{x1D701}}^{0}$
for each
$\unicode[STIX]{x1D701}^{\prime }\in k^{\times }$
, whose reduction is isomorphic to the affine curve defined by
$z^{2}+z=w^{3}$
.
4.4.1
$q$
odd
We assume that
$q$
is odd. For each
$\unicode[STIX]{x1D701}\in \unicode[STIX]{x1D707}_{2(q^{2}-1)}(k^{\text{ac}})$
, we define an affinoid
$\mathbf{X}_{\unicode[STIX]{x1D701}}\subset {\mathcal{D}}_{\unicode[STIX]{x1D701}}$
and compute its reduction
$\overline{\mathbf{X}}_{\unicode[STIX]{x1D701}}$
.
For
$\unicode[STIX]{x1D704}\in \unicode[STIX]{x1D707}_{2}(k^{\text{ac}})$
, we choose an element
$c_{1,\unicode[STIX]{x1D704}}^{\prime }\in {\mathcal{O}}_{K^{\text{ac}}}^{\times }$
such that
$\bar{c}_{1,\unicode[STIX]{x1D704}}^{\prime }=-2\unicode[STIX]{x1D704}$
and
$c_{1,\unicode[STIX]{x1D704}}^{\prime 2q}=4(1-\unicode[STIX]{x1D6FE}_{4}c_{1,\unicode[STIX]{x1D704}}^{\prime })$
. We take
$\unicode[STIX]{x1D701}\in \unicode[STIX]{x1D707}_{2(q^{2}-1)}(k^{\text{ac}})$
. We put
$c_{1,\unicode[STIX]{x1D701}}=c_{1,\unicode[STIX]{x1D701}^{q^{2}-1}}^{\prime }$
, and define
$c_{2,\unicode[STIX]{x1D701}}\in {\mathcal{O}}_{K^{\text{ac}}}^{\times }$
by
$c_{2,\unicode[STIX]{x1D701}}^{q^{2}-1}=-2c_{1,\unicode[STIX]{x1D701}}^{-q}$
and
$\bar{c}_{2,\unicode[STIX]{x1D701}}=\unicode[STIX]{x1D701}$
. We put

Note that we have
$v(a_{\unicode[STIX]{x1D701}})=1/(2q^{4})$
and
$v(b_{\unicode[STIX]{x1D701}})=1/(4q^{3})$
.
For an element
$\unicode[STIX]{x1D701}\in \unicode[STIX]{x1D707}_{2(q^{2}-1)}(k^{\text{ac}})$
, we define an affinoid
$\mathbf{X}_{\unicode[STIX]{x1D701}}$
by
$v(x_{3}-c_{2,\unicode[STIX]{x1D701}})\geqslant 1/(4q^{3})$
. We change variables as

Then, we acquire

by (4.27). Dividing this by
$a_{\unicode[STIX]{x1D701}}^{q}$
, we have
$z^{q}-z=w^{2}\;(\text{mod}~0+)$
. Hence, the reduction of
$\mathbf{X}_{\unicode[STIX]{x1D701}}$
is isomorphic to the affine curve defined by
$z^{q}-z=w^{2}$
.
Proposition 4.7. For each
$\unicode[STIX]{x1D701}\in \unicode[STIX]{x1D707}_{2(q^{2}-1)}(k^{\text{ac}})$
, the reduction
$\overline{\mathbf{X}}_{\unicode[STIX]{x1D701}}$
is isomorphic to the affine curve defined by
$z^{q}-z=w^{2}$
, and the complement
${\mathcal{D}}_{\unicode[STIX]{x1D701}}\setminus \mathbf{X}_{\unicode[STIX]{x1D701}}$
is an open annulus.
Proof. We have already proved the first assertion. We prove the second assertion. We change variables as

with
$0<v(w^{\prime })<1/(4q^{3})$
. Substituting them into (4.27), we obtain

Note that we have
$0<v(z^{\prime })<1/(2q^{4})$
. By setting
$w^{\prime }=z^{\prime \prime }z^{\prime (q-1)/2}$
, we acquire

Hence, we can see that
$z^{\prime }$
is written as a function of
$z^{\prime \prime }$
. Then,
$w^{\prime }$
is also written as a function of
$z^{\prime \prime }$
. Therefore,
$({\mathcal{D}}_{\unicode[STIX]{x1D701}}\setminus \mathbf{X}_{\unicode[STIX]{x1D701}})(\mathbf{C})$
is identified with
$\{z^{\prime \prime }\in \mathbf{C}\mid 0<v(z^{\prime \prime })<1/(4q^{4})\}$
.◻
4.4.2
$q$
even
We assume that
$q$
is even. We put

Then, the congruence (4.27) has the following form:

1. Projective lines For each
$\unicode[STIX]{x1D701}\in k_{2}^{\times }$
, we define a subaffinoid
$\mathbf{P}_{\unicode[STIX]{x1D701}}^{0}\subset {\mathcal{D}}_{\unicode[STIX]{x1D701}}$
by
$v(Z)\geqslant 1/(4q^{4})$
. We change variables as

Substituting these into (4.28) and dividing it by
$\unicode[STIX]{x1D71B}^{1/(4q^{3})}$
, we acquire

We can check that
$v(z_{1})\geqslant 0$
. We set
$q=2^{f}$
and put

for
$1\leqslant i\leqslant f+1$
. Furthermore, we define parameters
$z_{i}$
for
$2\leqslant i\leqslant f+1$
by

Lemma 4.8. We assume that
$v(Z)\geqslant 1/(4q^{4})$
. Then, we have

Proof. If
$q=2$
, we can check that

by

We have
$v(z_{2}^{2}+w_{1}^{3}+w_{1})>0$
. Therefore, we obtain

Hence, the required assertion in this case follows from (4.32). Assume that
$f\geqslant 2$
. For
$1\leqslant i\leqslant f+1$
, we put

We prove

for
$2\leqslant i\leqslant f+1$
by induction on
$i$
. Eliminating
$z_{1}$
from (4.29) by (4.30) and dividing it by
$\unicode[STIX]{x1D71B}^{1/(8q^{4})}$
, we obtain

This shows

Hence, we have (4.33) for
$i=2$
. Assume (4.33) for
$i$
. Eliminating
$z_{i}$
from (4.33) by (4.30) and dividing it by
$\unicode[STIX]{x1D71B}^{m_{i}}$
, we obtain (4.33) for
$i+1$
. Hence, we have (4.33) for
$f+1$
, which is equivalent to (4.31).◻
Proposition 4.9. For each
$\unicode[STIX]{x1D701}\in k_{2}^{\times }$
, the reduction
$\overline{\mathbf{P}}_{\unicode[STIX]{x1D701}}^{0}$
is isomorphic to the affine curve defined by
$z_{f+1}^{2}=w_{1}(w_{1}^{q-1}-1)^{2}$
, which has genus
$0$
and singularities at
$w_{1}\in k^{\times }$
, and the complement
${\mathcal{D}}_{\unicode[STIX]{x1D701}}\setminus \mathbf{P}_{\unicode[STIX]{x1D701}}^{0}$
is an open annulus.
Proof. The claim on
$\overline{\mathbf{P}}_{\unicode[STIX]{x1D701}}^{0}$
follows from the congruence (4.31) modulo
$0+$
. We prove the last assertion. We change a variable as
$Z_{1}=1+z_{1}^{\prime }$
with
$0<v(z_{1}^{\prime })<1/(8q^{3})$
. Similarly to (4.30), we introduce parameters
$\{z_{i}^{\prime }\}_{2\leqslant i\leqslant f+1}$
by
$z_{i}^{\prime }+Z^{l_{i}}=z_{i+1}^{\prime }$
for
$1\leqslant i\leqslant f$
. Then, by similar computations to those in the proof of Lemma 4.8, we obtain

By setting
$z_{f+2}^{\prime }=Z^{q}/z_{f+1}^{\prime }$
, we obtain

Then, we can see that all parameters
$z_{i}^{\prime }$
for
$1\leqslant i\leqslant f+1$
and
$Z$
are written as functions of
$z_{f+2}^{\prime }$
. Hence,
$({\mathcal{D}}_{\unicode[STIX]{x1D701}}\setminus \mathbf{P}_{\unicode[STIX]{x1D701}}^{0})(\mathbf{C})$
is identified with

2. Elliptic curves For
$\unicode[STIX]{x1D701}^{\prime }\in k^{\times }$
, we choose
$c_{2,\unicode[STIX]{x1D701}^{\prime }}\in {\mathcal{O}}_{\mathbf{C}}^{\times }$
such that
$\bar{c}_{2,\unicode[STIX]{x1D701}^{\prime }}=\unicode[STIX]{x1D701}^{\prime }$
and

and a square root
$c_{2,\unicode[STIX]{x1D701}^{\prime }}^{1/2}$
of
$c_{2,\unicode[STIX]{x1D701}^{\prime }}$
. Further, we choose
$c_{1,\unicode[STIX]{x1D701}^{\prime }}$
such that

and
$b_{2,\unicode[STIX]{x1D701}^{\prime }}$
such that
$b_{2,\unicode[STIX]{x1D701}^{\prime }}^{3}=\unicode[STIX]{x1D71B}^{1/(4q^{4})}c_{2,\unicode[STIX]{x1D701}^{\prime }}^{4}$
. We put

For each
$\unicode[STIX]{x1D701}^{\prime }\in k^{\times }$
, we define a subspace
${\mathcal{D}}_{\unicode[STIX]{x1D701},\unicode[STIX]{x1D701}^{\prime }}\subset \mathbf{P}_{\unicode[STIX]{x1D701}}^{0}$
by
$v(w_{1}-c_{2,\unicode[STIX]{x1D701}^{\prime }})>0$
. Furthermore, we define
$\mathbf{X}_{\unicode[STIX]{x1D701},\unicode[STIX]{x1D701}^{\prime }}\subset {\mathcal{D}}_{\unicode[STIX]{x1D701},\unicode[STIX]{x1D701}^{\prime }}$
by
$v(w_{1}-c_{2,\unicode[STIX]{x1D701}^{\prime }})\geqslant 1/(12q^{4})$
. We put

We take
$(\unicode[STIX]{x1D701},\unicode[STIX]{x1D701}^{\prime })\in k_{2}^{\times }\times k^{\times }$
and compute the reduction of
$\mathbf{X}_{\unicode[STIX]{x1D701},\unicode[STIX]{x1D701}^{\prime }}$
. In the following, we omit the subscript
$\unicode[STIX]{x1D701}^{\prime }$
of
$a_{1,\unicode[STIX]{x1D701}^{\prime }}$
,
$b_{1,\unicode[STIX]{x1D701}^{\prime }}$
,
$b_{2,\unicode[STIX]{x1D701}^{\prime }}$
$c_{1,\unicode[STIX]{x1D701}^{\prime }}$
and
$c_{2,\unicode[STIX]{x1D701}^{\prime }}$
, if there is no confusion. We change variables as

By substituting these into (4.31), we acquire

by the definition of
$a_{1}$
,
$b_{1}$
,
$b_{2}$
,
$c_{1}$
and
$c_{2}$
.
Proposition 4.10. For each
$(\unicode[STIX]{x1D701},\unicode[STIX]{x1D701}^{\prime })\in k_{2}^{\times }\times k^{\times }$
, the reduction of
$\mathbf{X}_{\unicode[STIX]{x1D701},\unicode[STIX]{x1D701}^{\prime }}$
is isomorphic to the affine curve defined by
$z^{2}+z=w^{3}$
, and the complement
${\mathcal{D}}_{\unicode[STIX]{x1D701},\unicode[STIX]{x1D701}^{\prime }}\setminus \mathbf{X}_{\unicode[STIX]{x1D701},\unicode[STIX]{x1D701}^{\prime }}$
is an open annulus.
Proof. The first assertion follows from (4.34). We prove the second assertion. We change variables as

with
$0<v(w^{\prime })<1/(12q^{4})$
. Substituting them into (4.31), we acquire

by the choice of
$c_{2}$
. Note that we have

By setting
$z^{\prime \prime }=z^{\prime }/(c_{2}^{q-2}w^{\prime })$
, we obtain

Then, we can see that
$z^{\prime }$
and
$w^{\prime }$
are written as functions of
$z^{\prime \prime }$
. Hence,
$({\mathcal{D}}_{\unicode[STIX]{x1D701},\unicode[STIX]{x1D701}^{\prime }}\setminus \mathbf{X}_{\unicode[STIX]{x1D701},\unicode[STIX]{x1D701}^{\prime }})(\mathbf{C})$
is identified with
$\{z^{\prime \prime }\in \mathbf{C}\mid 0<v(z^{\prime \prime })<1/(24q^{4})\}$
.◻
4.5 Stable covering of
$\mathbf{X}_{1}(\mathfrak{p}^{3})$
In this subsection, we show the existence of the stable covering of
$\mathbf{X}_{1}(\mathfrak{p}^{3})$
over some finite extension of the base field
$\widehat{K}^{\text{ur}}$
. See [Reference Coleman and McMurdyCM, Section 2.3] for the notion of semistable coverings. A semistable covering is called stable, if the corresponding semistable model is stable.
Proposition 4.11. There exists a stable covering of
$\mathbf{X}_{1}(\mathfrak{p}^{3})$
over a finite extension of the base field.
Proof. First, we show that, after taking a finite extension of the base field,
$\mathbf{X}_{1}(\mathfrak{p}^{3})$
is a wide open space. By [Reference StrauchSt1, Theorem 2.3.1(i)],
$\mathbf{X}_{1}(\mathfrak{p}^{3})$
is the Raynaud generic fiber of the formal completion of an affine scheme over
${\mathcal{O}}_{\widehat{K}^{\text{ur}}}$
at a closed point on the special fiber. Then, we can apply [Reference Coleman and McMurdyCM, Theorem 2.29] to the formal completion of the affine scheme along its special fiber, after shrinking the affine scheme. Hence,
$\mathbf{X}_{1}(\mathfrak{p}^{3})$
is a wide open space over some extension.
By [Reference Coleman and McMurdyCM, Theorem 2.18], a wide open space can be embedded to a proper algebraic curve so that its complement is a disjoint union of closed disks. Therefore,
$\mathbf{X}_{1}(\mathfrak{p}^{3})$
has a semistable covering over some finite extension by [Reference Coleman and McMurdyCM, Theorem 2.40]. Then, a simple modification gives a stable covering.◻
In the following, we construct a candidate of a semistable covering of
$\mathbf{X}_{1}(\mathfrak{p}^{3})$
over some finite extension. We put

We note that
$\mathbf{V}_{1}\supset \mathbf{Y}_{1,2}$
,
$\mathbf{V}_{2}\supset \mathbf{Y}_{2,1}$
,
$\mathbf{U}\supset \mathbf{Z}_{1,1}$
,
$\mathbf{V}_{1}\cap \mathbf{V}_{2}=\emptyset$
,
$\mathbf{V}_{1}\cap \mathbf{U}=\mathbf{W}_{1,1^{\prime }}^{+}$
and
$\mathbf{V}_{2}\cap \mathbf{U}=\mathbf{W}_{1,1^{\prime }}^{-}$
.
We consider the case where
$q$
is even in this paragraph. We set
$\hat{{\mathcal{D}}}_{\unicode[STIX]{x1D701}}={\mathcal{D}}_{\unicode[STIX]{x1D701}}\backslash (\bigcup _{\unicode[STIX]{x1D701}^{\prime }\in k^{\times }}\mathbf{X}_{\unicode[STIX]{x1D701},\unicode[STIX]{x1D701}^{\prime }})$
for
$\unicode[STIX]{x1D701}\in k_{2}^{\times }$
. Then,
$\hat{{\mathcal{D}}}_{\unicode[STIX]{x1D701}}$
contains
$\mathbf{P}_{\unicode[STIX]{x1D701}}$
as the underlying affinoid. On the other hand, for
$(\unicode[STIX]{x1D701},\unicode[STIX]{x1D701}^{\prime })\in k_{2}^{\times }\times k^{\times }$
, the space
${\mathcal{D}}_{\unicode[STIX]{x1D701},\unicode[STIX]{x1D701}^{\prime }}$
has the underlying affinoid
$\mathbf{X}_{\unicode[STIX]{x1D701},\unicode[STIX]{x1D701}^{\prime }}$
.
We put

Now, we define an admissible covering of
$\mathbf{X}_{1}(\mathfrak{p}^{3})$
as

In Section 7.2, we show that
${\mathcal{C}}_{1}(\mathfrak{p}^{3})$
is a semistable covering of
$\mathbf{X}_{1}(\mathfrak{p}^{3})$
over some finite extension.
5 Action of the division algebra on the reductions
In this section, we determine the action of
${\mathcal{O}}_{D}^{\times }$
on the reductions
$\overline{\mathbf{Y}}_{1,2}$
,
$\overline{\mathbf{Y}}_{2,1}$
$\overline{\mathbf{Z}}_{1,1}$
,
$\{\overline{\mathbf{P}}_{\unicode[STIX]{x1D701}}\}_{\unicode[STIX]{x1D701}\in k_{2}^{\times }}$
and
$\{\overline{\mathbf{X}}_{\unicode[STIX]{x1D701}}\}_{\unicode[STIX]{x1D701}\in {\mathcal{S}}}$
by using the description of
${\mathcal{O}}_{D}^{\times }$
-action in (1.8). We take

where
$d_{1}\in {\mathcal{O}}_{K_{2}}^{\times }$
and
$d_{2}\in {\mathcal{O}}_{K_{2}}$
. We put

Lemma 5.1. The element
$d$
induces the following morphisms:

Proof. We prove the assertion for
$\overline{\mathbf{Y}}_{1,2}$
. By (1.5), we have

Therefore, the required assertion follows from (4.5). The assertion for
$\overline{\mathbf{Y}}_{1,2}$
is proved similarly.◻
Now, let the notation be as in Section 4.3. We put

We have

by (1.11). On the other hand, we have

by (1.5). Hence, we obtain



By the definition of
$t$
and the equation
$x_{2}^{\prime }/x_{1}^{\prime }=-1+\unicode[STIX]{x1D6FE}_{2}(x_{2}^{\prime q}/t^{\prime })$
, we acquire


By the definition of
$Z_{0}$
and the equation
$1+(x_{3}^{\prime q}/t^{\prime })=\unicode[STIX]{x1D6FE}_{3}Z_{0}^{\prime }$
, we obtain


By the definition of
$Z$
and the equation

we obtain

using (5.1), (5.2), (5.3) and (5.5). We have

by
$x_{1}\equiv -x_{3}^{q^{2}},~x_{2}\equiv x_{3}^{q^{2}}\;(\text{mod}~0+)$
. We put

Then, the congruence (5.6) has the following form:

Proposition 5.2. The element
$d$
acts on
$\overline{\mathbf{Z}}_{1,1}$
by

Proposition 5.3. The element
$d$
induces the morphism

Proposition 5.4. We take
$\unicode[STIX]{x1D701}\in {\mathcal{S}}_{1}$
. Further, we take
$\unicode[STIX]{x1D701}^{\prime }\in k^{\times }$
, if
$q$
is even. We set as follows:

where
$\unicode[STIX]{x1D702},d\unicode[STIX]{x1D702}\in {\mathcal{S}}$
. Then, the element
$d$
induces

Proof. First, we assume that
$q$
is odd. Recall that
$Z=a_{\unicode[STIX]{x1D701}}z+c_{1,\unicode[STIX]{x1D701}}$
and
$x_{3}=b_{\unicode[STIX]{x1D701}}w+c_{2,\unicode[STIX]{x1D701}}$
. Similarly, we have
$Z^{\prime }=a_{\bar{d}_{1}\unicode[STIX]{x1D701}}z^{\prime }+c_{1,\bar{d}_{1}\unicode[STIX]{x1D701}}$
and
$x_{3}=b_{\bar{d}_{1}\unicode[STIX]{x1D701}}w^{\prime }+c_{2,\bar{d}_{1}\unicode[STIX]{x1D701}}$
. Then, the claim follows from (5.7).
Next, we assume that
$q$
is even. By (5.7) and
$d^{\ast }x_{3}\equiv d_{1}x_{3}\;(\text{mod}~(\unicode[STIX]{x1D716}_{3}/2)+)$
, we acquire

on the locus where
$v(Z)\geqslant \unicode[STIX]{x1D716}_{4}/2$
. By
$z_{f+1}=a_{1,\unicode[STIX]{x1D701}^{\prime }}z+b_{1,\unicode[STIX]{x1D701}^{\prime }}w+c_{1,\unicode[STIX]{x1D701}^{\prime }}$
and
$w_{1}=b_{2,\unicode[STIX]{x1D701}^{\prime }}w+c_{2,\unicode[STIX]{x1D701}^{\prime }}$
, we obtain

on
$\mathbf{X}_{\unicode[STIX]{x1D701},\unicode[STIX]{x1D701}^{\prime }}$
by (5.7) and (5.8). On the other hand, we have

because
$\bar{x_{3}}=\unicode[STIX]{x1D701}$
and
$\bar{c}_{2,\unicode[STIX]{x1D701}^{\prime }}=\unicode[STIX]{x1D701}^{\prime }$
. Hence, we have proved the claim.◻
6 Action of the Weil group on the reductions
In this section, we compute the actions of the Weil group on the reductions
$\overline{\mathbf{Y}}_{1,2}$
,
$\overline{\mathbf{Y}}_{2,1}$
,
$\overline{\mathbf{Z}}_{1,1}$
,
$\{\overline{\mathbf{P}}_{\unicode[STIX]{x1D701}}\}_{\unicode[STIX]{x1D701}\in k_{2}^{\times }}$
and
$\{\overline{\mathbf{X}}_{\unicode[STIX]{x1D702}}\}_{\unicode[STIX]{x1D702}\in {\mathcal{S}}}$
.
Let
$\mathbf{X}$
be a reduced affinoid over
$\mathbf{C}$
with an action of
$W_{K}$
. For
$P\in \mathbf{X}(\mathbf{C})$
, the image of
$P$
under the natural reduction map
$\mathbf{X}(\mathbf{C})\rightarrow \overline{\mathbf{X}}(k^{\text{ac}})$
is denoted by
$\overline{P}$
. The action of
$W_{K}$
on
$\overline{\mathbf{X}}$
is a homomorphism

characterized by
$\overline{\unicode[STIX]{x1D70E}(P)}=w_{\mathbf{X}}(\unicode[STIX]{x1D70E})(\overline{P})$
for
$\unicode[STIX]{x1D70E}\in W_{K}$
and
$P\in \mathbf{X}(\mathbf{C})$
. For
$\unicode[STIX]{x1D70E}\in W_{K}$
, we define
$r_{\unicode[STIX]{x1D70E}}\in \mathbb{Z}$
so that
$\unicode[STIX]{x1D70E}$
induces the
$q^{-r_{\unicode[STIX]{x1D70E}}}$
th power map on the residue field of
$K^{\text{ac}}$
.
Remark 6.1. In the usual sense,
$W_{K}$
does not act on
$\mathbf{X}_{1}(\mathfrak{p}^{3})$
, because the action of
$W_{K}$
does not preserve the connected components of
$\text{LT}_{1}(\mathfrak{p}^{3})$
. Precisely,
$w_{\mathbf{X}}$
is the action of

which preserves the connected components of
$\text{LT}_{1}(\mathfrak{p}^{3})$
.
6.1 Actions of the Weil group on
$\overline{\mathbf{Y}}_{1,2}$
,
$\overline{\mathbf{Y}}_{2,1}$
and
$\overline{\mathbf{Z}}_{1,1}$
For
$\unicode[STIX]{x1D70E}\in W_{K}$
, we put

We note that
$\unicode[STIX]{x1D706}$
is not a group homomorphism in general.
Lemma 6.2. Let
$\unicode[STIX]{x1D70E}\in W_{K}$
. Then, the element
$\unicode[STIX]{x1D70E}$
induces the automorphisms

as schemes over
$k$
.
Proof. We prove the claim for
$\overline{\mathbf{Y}}_{1,2}$
. We set

with
$\unicode[STIX]{x1D709}\in \unicode[STIX]{x1D707}_{q^{3}(q^{2}-1)}(K^{\text{ac}})$
. Let
$P\in \mathbf{Y}_{1,2}(\mathbf{C})$
. We have
$X_{3}(\unicode[STIX]{x1D70E}(P))=\unicode[STIX]{x1D70E}(X_{3}(P))$
. By applying
$\unicode[STIX]{x1D70E}$
to
$X_{3}(P)=\unicode[STIX]{x1D71B}^{1/(q^{3}(q^{2}-1))}x_{3}(P)$
, we obtain

In the same way, we have

Therefore, we acquire
$x^{\unicode[STIX]{x1D70E}}=\bar{\unicode[STIX]{x1D709}}x^{q^{-r_{\unicode[STIX]{x1D70E}}}}$
and
$y^{\unicode[STIX]{x1D70E}}=\bar{\unicode[STIX]{x1D709}}^{-q}y^{q^{-r_{\unicode[STIX]{x1D70E}}}}$
by (4.5). Hence, the claim follows from
$\bar{\unicode[STIX]{x1D709}}=\unicode[STIX]{x1D706}(\unicode[STIX]{x1D70E})^{q}$
. We can prove the claim for
$\overline{\mathbf{Y}}_{2,1}$
similarly.◻
For
$\unicode[STIX]{x1D70E}\in W_{K}$
, we put

Lemma 6.3. Let
$\unicode[STIX]{x1D70E}\in W_{K}$
. Then,
$\unicode[STIX]{x1D70E}$
acts on
$\overline{\mathbf{Z}}_{1,1}$
by
$(Z,x_{3})\mapsto (Z^{q^{-r_{\unicode[STIX]{x1D70E}}}},\bar{\unicode[STIX]{x1D709}}_{\unicode[STIX]{x1D70E}}x_{3}^{q^{-r_{\unicode[STIX]{x1D70E}}}})$
.
Proof. We use the notation in Section 4.3. Let
$P\in \mathbf{Z}_{1,1}(\mathbf{C})$
. Since we set
$X_{1}=\unicode[STIX]{x1D714}_{1}^{2q-1}x_{1}$
,
$X_{2}=\unicode[STIX]{x1D714}_{1}x_{2}$
and
$X_{3}=\unicode[STIX]{x1D714}_{3}x_{3}$
, we have

Hence, we obtain

Since we set
$x_{2}/x_{1}=-1+\unicode[STIX]{x1D6FE}_{2}(x_{2}^{q}/t)$
, we acquire

Therefore, we obtain

Since we set
$1+(x_{3}^{q}/t)=\unicode[STIX]{x1D6FE}_{3}Z_{0}$
, we obtain

Therefore, we acquire

by
$Z_{0}+(x_{2}/x_{3})-(x_{3}/x_{1})=\unicode[STIX]{x1D6FE}_{4}(x_{2}/x_{3})Z$
.
The assertion follows from

and (6.1).◻
6.2 Action of the Weil group on
$\overline{\mathbf{X}}_{\unicode[STIX]{x1D702}}$
In this subsection, let
$\unicode[STIX]{x1D701}\in \unicode[STIX]{x1D707}_{2(q^{2}-1)}(k^{\text{ac}})$
. Until Lemma 6.8, let
$\unicode[STIX]{x1D70E}\in W_{K}$
.
6.2.1
$q$
odd
We assume that
$q$
is odd. We use the notation in Section 4.4.1. By (6.1) and
$x_{3}(\unicode[STIX]{x1D70E}(P))=\unicode[STIX]{x1D709}_{\unicode[STIX]{x1D70E}}\unicode[STIX]{x1D70E}(x_{3}(P))$
, we have

and

for
$P\in \mathbf{X}_{\unicode[STIX]{x1D701}}(\mathbf{C})$
. Note that
$c_{1,\bar{\unicode[STIX]{x1D709}}_{\unicode[STIX]{x1D70E}}\unicode[STIX]{x1D701}^{q^{-r_{\unicode[STIX]{x1D70E}}}}}=c_{1,\unicode[STIX]{x1D701}}$
and
$c_{2,\bar{\unicode[STIX]{x1D709}}_{\unicode[STIX]{x1D70E}}\unicode[STIX]{x1D701}^{q^{-r_{\unicode[STIX]{x1D70E}}}}}=\unicode[STIX]{x1D709}_{\unicode[STIX]{x1D70E}}^{q^{4}}\unicode[STIX]{x1D701}^{q^{-r_{\unicode[STIX]{x1D70E}}}-1}c_{2,\unicode[STIX]{x1D701}}$
. We have

by (6.2). We put

Then, we have
$a_{\unicode[STIX]{x1D70E},\unicode[STIX]{x1D701}},b_{\unicode[STIX]{x1D70E},\unicode[STIX]{x1D701}},c_{\unicode[STIX]{x1D70E},\unicode[STIX]{x1D701}}\in {\mathcal{O}}_{K^{\text{ac}}}$
. In the following, we omit the subscript
$\unicode[STIX]{x1D701}$
of
$a_{\unicode[STIX]{x1D70E},\unicode[STIX]{x1D701}}$
,
$b_{\unicode[STIX]{x1D70E},\unicode[STIX]{x1D701}}$
and
$c_{\unicode[STIX]{x1D70E},\unicode[STIX]{x1D701}}$
.
Proposition 6.4. We have
$\bar{a}_{\unicode[STIX]{x1D70E}}\in k^{\times }$
,
$\bar{b}_{\unicode[STIX]{x1D70E}}\in k$
and
$\bar{a}_{\unicode[STIX]{x1D70E}}=\bar{c}_{\unicode[STIX]{x1D70E}}^{2}$
. Further,
$\unicode[STIX]{x1D70E}$
induces the morphism

Proof. We have

by
$v(\unicode[STIX]{x1D70E}(c_{1,\unicode[STIX]{x1D701}})-c_{1,\unicode[STIX]{x1D701}})\geqslant \unicode[STIX]{x1D716}_{4}$
. Hence, we have the last assertion by (6.2) and (6.3). By the definition of
$a_{\unicode[STIX]{x1D701}}$
,
$b_{\unicode[STIX]{x1D701}}$
and
$c_{1,\unicode[STIX]{x1D701}}$
, we can check that

using
$c_{1,\unicode[STIX]{x1D701}}^{q}\equiv -\unicode[STIX]{x1D704}(2-\unicode[STIX]{x1D6FE}_{4}c_{1,\unicode[STIX]{x1D701}})\;(\text{mod}~(q-1)/q^{4})$
.◻
We put
$L=K(\unicode[STIX]{x1D71B}^{1/2})$
and
$L_{2}=K_{2}(\unicode[STIX]{x1D71B}^{1/2})$
in
$K^{\text{ac}}$
. Let
$\text{LT}_{L_{2}}$
be the formal
${\mathcal{O}}_{L_{2}}$
-module over
${\mathcal{O}}_{L^{\text{ur}}}$
of dimension
$1$
such that

We put
$\unicode[STIX]{x1D71B}_{1,L_{2}}=\unicode[STIX]{x1D71B}^{1/(2(q^{2}-1))}$
and take
$\unicode[STIX]{x1D71B}_{2,L_{2}}\in {\mathcal{O}}_{K^{\text{ac}}}$
such that
$[\unicode[STIX]{x1D71B}^{1/2}]_{\text{LT}_{L_{2}}}(\unicode[STIX]{x1D71B}_{2,L_{2}})=\unicode[STIX]{x1D71B}_{1,L_{2}}$
. Let
$\text{Art}_{L_{2}}:L_{2}^{\times }\stackrel{{\sim}}{\rightarrow }W_{L_{2}}^{\text{ab}}$
be the Artin reciprocity map normalized so that the image by
$\text{Art}_{L_{2}}$
of a uniformizer is a lift of the geometric Frobenius. We consider the following homomorphism:

This map is equal to the composite

where the first homomorphism is induced from the inverse of
$\text{Art}_{L_{2}}$
, and the second homomorphism is given by
$a+b\unicode[STIX]{x1D71B}^{1/2}\mapsto (\bar{a},\bar{b}/\bar{a})$
for
$a\in \unicode[STIX]{x1D707}_{q^{2}-1}(L_{2})$
and
$b\in {\mathcal{O}}_{L_{2}}$
. Then, we rewrite Proposition 6.4 as follows.
Corollary 6.5. Let
$\unicode[STIX]{x1D70E}\in I_{L}$
. We put

Then,
$\unicode[STIX]{x1D70E}$
induces the morphism

Proof. We can check that
$\bar{a}_{\unicode[STIX]{x1D70E}}=\unicode[STIX]{x1D706}_{1}(\unicode[STIX]{x1D70E})^{-2(q+1)}$
and
$\bar{c}_{\unicode[STIX]{x1D70E}}=\unicode[STIX]{x1D706}_{1}(\unicode[STIX]{x1D70E})^{-(q+1)}$
easily. We prove that

We simply write
$\unicode[STIX]{x1D71B}_{i}$
for
$\unicode[STIX]{x1D71B}_{i,L_{2}}$
. We put
$\unicode[STIX]{x1D704}=\unicode[STIX]{x1D701}^{q^{2}-1}$
and

Then, we have

by
$\unicode[STIX]{x1D71B}_{2}^{q^{2}}-\unicode[STIX]{x1D71B}^{1/2}\unicode[STIX]{x1D71B}_{2}=-\unicode[STIX]{x1D71B}_{1}$
. We can easily check the equality

On the other hand, we can check

by the definition of
$c_{1,\unicode[STIX]{x1D701}}$
. Therefore, the elements
$C$
and
$c_{1,\unicode[STIX]{x1D701}}^{q^{3}}/(2\unicode[STIX]{x1D704})$
satisfy

Hence, we obtain
$C\equiv c_{1,\unicode[STIX]{x1D701}}^{q^{3}}/(2\unicode[STIX]{x1D704})\;(\text{mod}~\unicode[STIX]{x1D716}_{1}+)$
. This implies that

Therefore, we obtain

by
$\unicode[STIX]{x1D709}_{\unicode[STIX]{x1D70E}}=\unicode[STIX]{x1D706}_{1}(\unicode[STIX]{x1D70E})^{q+1}\;(\text{mod}~0+)$
.◻
6.2.2
$q$
even
We assume that
$q$
is even. We use the notation in Section 4.4.2. For
$P\in \mathbf{P}^{0}(\mathbf{C})$
, we have

by (6.1). We can see that

Lemma 6.6. The element
$\unicode[STIX]{x1D70E}$
induces the morphism

We take
$\unicode[STIX]{x1D701}^{\prime }\in k^{\times }$
. By (6.4) and (6.5), we have

and

using
$\unicode[STIX]{x1D70E}(a_{1,\unicode[STIX]{x1D701}^{\prime }})\equiv a_{1,\unicode[STIX]{x1D701}^{\prime }}\;(\text{mod}~1/(8q^{4})+)$
. We put

In the following, we omit the subscript
$\unicode[STIX]{x1D701}^{\prime }$
of
$a_{\unicode[STIX]{x1D70E},\unicode[STIX]{x1D701}^{\prime }}$
,
$b_{\unicode[STIX]{x1D70E},\unicode[STIX]{x1D701}^{\prime }}$
,
$b_{\unicode[STIX]{x1D70E},\unicode[STIX]{x1D701}^{\prime }}^{\prime }$
and
$c_{\unicode[STIX]{x1D70E},\unicode[STIX]{x1D701}^{\prime }}$
. We note that
$v(a_{\unicode[STIX]{x1D70E}})=0$
. We have
$v(b_{\unicode[STIX]{x1D70E}}^{\prime })\geqslant 0$
by (6.7). This implies that
$v(b_{\unicode[STIX]{x1D70E}})\geqslant 0$
. By (6.6) and (6.7), we obtain
$v(c_{\unicode[STIX]{x1D70E}})\geqslant 0$
using
$v(b_{\unicode[STIX]{x1D70E}})\geqslant 0$
.
Proposition 6.7. The element
$\unicode[STIX]{x1D70E}$
induces the morphism

In the following, we simplify the description of
$\bar{a}_{\unicode[STIX]{x1D70E}}$
,
$\bar{b}_{\unicode[STIX]{x1D70E}}$
,
$\bar{b}_{\unicode[STIX]{x1D70E}}^{\prime }$
and
$\bar{c}_{\unicode[STIX]{x1D70E}}$
. Let
$\tilde{\unicode[STIX]{x1D701}}^{\prime }\in \unicode[STIX]{x1D707}_{q-1}(K)$
be the lift of
$\unicode[STIX]{x1D701}^{\prime }$
. We put

Lemma 6.8. There is a root
$\unicode[STIX]{x1D6FF}_{1}$
of
$h_{\unicode[STIX]{x1D701}^{\prime }}(x)=0$
such that

Proof. We put

By the definition of
$c_{2,\unicode[STIX]{x1D701}^{\prime }}$
, we have
$h(c_{2,\unicode[STIX]{x1D701}^{\prime }}^{q^{4}})\equiv 0\;(\text{mod}~1)$
. Hence, we have a root
$c_{2}^{\prime }$
of
$h$
such that
$c_{2}^{\prime }\equiv c_{2,\unicode[STIX]{x1D701}^{\prime }}^{q^{4}}\;(\text{mod}~3/4)$
by Newton’s method. We can check that

We define a parameter
$s$
with
$v(s)\geqslant 1/16$
by
$x=\tilde{\unicode[STIX]{x1D701}}^{\prime }+s$
. Then, we have

This implies that

Therefore, we have a root
$\unicode[STIX]{x1D6FF}_{1}$
of
$h_{\unicode[STIX]{x1D701}^{\prime }}(x)=0$
such that

by Newton’s method. ◻
By the definition of
$b_{2,\unicode[STIX]{x1D701}^{\prime }}$
, we have

Let
$\unicode[STIX]{x1D701}^{\prime \prime }$
be the element of
$\unicode[STIX]{x1D707}_{3(q-1)}(K^{\text{ur}})$
satisfying
$\unicode[STIX]{x1D701}^{\prime \prime }\equiv b_{2,\unicode[STIX]{x1D701}^{\prime }}^{q^{4}}\unicode[STIX]{x1D71B}^{-1/12}\;(\text{mod}~0+)$
. Note that
$\unicode[STIX]{x1D701}^{\prime \prime 3}=\tilde{\unicode[STIX]{x1D701}}^{\prime 4}$
. We take
$\unicode[STIX]{x1D6FF}_{1}$
as in Lemma 6.8 and put
$\unicode[STIX]{x1D6FF}=\unicode[STIX]{x1D6FF}_{1}/(\unicode[STIX]{x1D701}^{\prime \prime }\unicode[STIX]{x1D71B}^{1/12})$
. Then, we have

Note that
$v(\unicode[STIX]{x1D6FF})=-1/12$
. We take
$\unicode[STIX]{x1D701}_{3}\in \unicode[STIX]{x1D707}_{3}(K^{\text{ur}})$
such that
$\unicode[STIX]{x1D701}_{3}\neq 1$
, and put

Lemma 6.9. There is a root
$\unicode[STIX]{x1D703}_{1}$
of
$h_{\unicode[STIX]{x1D6FF}_{1}}(x)=0$
such that

Proof. By the definition of
$c_{1,\unicode[STIX]{x1D701}^{\prime }}$
and
$c_{2,\unicode[STIX]{x1D701}^{\prime }}$
, we have
$h_{\unicode[STIX]{x1D6FF}_{1}}(c_{1,\unicode[STIX]{x1D701}^{\prime }}^{2q^{4}})\equiv 0\;(\text{mod}~1/2+)$
. Hence, we can show the claim using Newton’s method.◻
We take
$\unicode[STIX]{x1D703}_{1}$
as in Lemma 6.9 and put

Then, we have
$\unicode[STIX]{x1D703}^{2}-\unicode[STIX]{x1D703}=\unicode[STIX]{x1D6FF}^{3}$
. Note that
$v(\unicode[STIX]{x1D703})=-1/8$
. Let
$\unicode[STIX]{x1D70E}\in W_{K}$
in this paragraph. We put

We take
$\unicode[STIX]{x1D708}_{\unicode[STIX]{x1D70E}}\in \unicode[STIX]{x1D707}_{3}(K^{\text{ur}})\cup \{0\}$
such that
$\unicode[STIX]{x1D70E}(\unicode[STIX]{x1D6FF})\equiv \unicode[STIX]{x1D701}_{3,\unicode[STIX]{x1D70E}}^{-1}(\unicode[STIX]{x1D6FF}+\unicode[STIX]{x1D708}_{\unicode[STIX]{x1D70E}})\;(\text{mod}~5/6)$
. Then, we have

By these equations, we can take
$\unicode[STIX]{x1D707}_{\unicode[STIX]{x1D70E}}\in \unicode[STIX]{x1D707}_{3}(K^{\text{ur}})\cup \{0\}$
such that

Then, we have
$\unicode[STIX]{x1D707}_{\unicode[STIX]{x1D70E}}^{2}+\unicode[STIX]{x1D707}_{\unicode[STIX]{x1D70E}}\equiv \unicode[STIX]{x1D708}_{\unicode[STIX]{x1D70E}}^{3}\;(\text{mod}~1)$
by (6.8) and
$\unicode[STIX]{x1D708}_{\unicode[STIX]{x1D70E}},\unicode[STIX]{x1D707}_{\unicode[STIX]{x1D70E}}\in \unicode[STIX]{x1D707}_{3}(K^{\text{ur}})\cup \{0\}$
.
Lemma 6.10.
-
(1) Let
$\unicode[STIX]{x1D70E}\in W_{K}$ . Then, we have
$$\begin{eqnarray}a_{\unicode[STIX]{x1D70E}}\equiv \unicode[STIX]{x1D701}_{3,\unicode[STIX]{x1D70E}},\qquad b_{\unicode[STIX]{x1D70E}}\equiv \unicode[STIX]{x1D701}_{3,\unicode[STIX]{x1D70E}}\unicode[STIX]{x1D708}_{\unicode[STIX]{x1D70E}}^{2},\qquad b_{\unicode[STIX]{x1D70E}}^{\prime }\equiv \unicode[STIX]{x1D708}_{\unicode[STIX]{x1D70E}},\qquad c_{\unicode[STIX]{x1D70E}}\equiv \unicode[STIX]{x1D707}_{\unicode[STIX]{x1D70E}}\quad \left(\text{mod}~0+\right).\end{eqnarray}$$
-
(2) Let
$\unicode[STIX]{x1D70E}\in W_{K}$ . Then we have
$\bar{a}_{\unicode[STIX]{x1D70E}}\in \mathbb{F}_{4}^{\times }$ and
$\bar{b}_{\unicode[STIX]{x1D70E}},\bar{b}_{\unicode[STIX]{x1D70E}}^{\prime },\bar{c}_{\unicode[STIX]{x1D70E}}\in \mathbb{F}_{4}$ . Further,
$\bar{a}_{\unicode[STIX]{x1D70E}}\bar{b}_{\unicode[STIX]{x1D70E}}^{2}=\bar{b}_{\unicode[STIX]{x1D70E}}^{\prime }$ and
$\bar{b}_{\unicode[STIX]{x1D70E}}^{3}=\bar{c}_{\unicode[STIX]{x1D70E}}^{2}+\bar{c}_{\unicode[STIX]{x1D70E}}$ hold.
Proof. By the definition of
$b_{2,\unicode[STIX]{x1D701}^{\prime }}$
, we have

Hence, we have
$\bar{a}_{\unicode[STIX]{x1D70E}}^{4q^{4}}=\bar{\unicode[STIX]{x1D701}}_{3,\unicode[STIX]{x1D70E}}\in \mathbb{F}_{4}^{\times }$
. This implies that
$\bar{a}_{\unicode[STIX]{x1D70E}}=\bar{\unicode[STIX]{x1D701}}_{3,\unicode[STIX]{x1D70E}}\in \mathbb{F}_{4}^{\times }$
.
By the definition of
$a_{1,\unicode[STIX]{x1D701}^{\prime }}$
and
$b_{1,\unicode[STIX]{x1D701}^{\prime }}$
, we have

where we use Lemma 6.8 in the second congruence,
$b_{2,\unicode[STIX]{x1D701}^{\prime }}^{q^{4}}/\unicode[STIX]{x1D71B}^{1/12}\equiv \unicode[STIX]{x1D701}^{\prime \prime }\;(\text{mod}~0+)$
in the third congruence,
$\unicode[STIX]{x1D6FF}_{1}^{4}=\tilde{\unicode[STIX]{x1D701}}^{\prime 4}\;(\text{mod}~1/4)$
and
$\unicode[STIX]{x1D701}^{\prime \prime 3}=\tilde{\unicode[STIX]{x1D701}}^{\prime 4}$
in the fourth congruence, and
$\unicode[STIX]{x1D70E}(\unicode[STIX]{x1D701}^{\prime \prime }\unicode[STIX]{x1D71B}^{1/12})/(\unicode[STIX]{x1D701}^{\prime \prime }\unicode[STIX]{x1D71B}^{1/12})\equiv \unicode[STIX]{x1D701}_{3,\unicode[STIX]{x1D70E}}\;(\text{mod}~0+)$
in the last congruence. Hence, we obtain
$\bar{b}_{\unicode[STIX]{x1D70E}}=\bar{\unicode[STIX]{x1D701}}_{3,\unicode[STIX]{x1D70E}}\bar{\unicode[STIX]{x1D708}}_{\unicode[STIX]{x1D70E}}^{2}\in \mathbb{F}_{4}$
.
By Lemma 6.8 and
$b_{2,\unicode[STIX]{x1D701}^{\prime }}^{q^{4}}/\unicode[STIX]{x1D71B}^{1/12}\equiv \unicode[STIX]{x1D701}^{\prime \prime }\;(\text{mod}~0+)$
, we have

Hence, we obtain
$\bar{b}_{\unicode[STIX]{x1D70E}}^{\prime }=\bar{\unicode[STIX]{x1D708}}_{\unicode[STIX]{x1D70E}}\in \mathbb{F}_{4}$
.
By Lemmas 6.8 and 6.9 and the definition of
$a_{1,\unicode[STIX]{x1D701}^{\prime }}$
, we have

where we use
$\unicode[STIX]{x1D70E}(\unicode[STIX]{x1D6FF}_{1})\equiv \unicode[STIX]{x1D6FF}_{1}\;(\text{mod}~1/4)$
in the second congruence, and
$\unicode[STIX]{x1D6FF}_{1}^{4}=\tilde{\unicode[STIX]{x1D701}}^{\prime 4}\;(\text{mod}~1/4)$
in the third congruence. Then, we have
$\bar{c}_{\unicode[STIX]{x1D70E}}^{2q^{4}}\in \mathbb{F}_{4}$
by (6.8). Hence, we have
$\bar{c}_{\unicode[STIX]{x1D70E}}\in \mathbb{F}_{4}$
and
$c_{\unicode[STIX]{x1D70E}}\equiv \unicode[STIX]{x1D707}_{\unicode[STIX]{x1D70E}}\;(\text{mod}~0+)$
, again by (6.8).
By the above calculations, we can easily check that
$\bar{a}_{\unicode[STIX]{x1D70E}}\bar{b}_{\unicode[STIX]{x1D70E}}^{2}=\bar{b}_{\unicode[STIX]{x1D70E}}^{\prime }$
and
$\bar{b}_{\unicode[STIX]{x1D70E}}^{3}=\bar{c}_{\unicode[STIX]{x1D70E}}^{2}+\bar{c}_{\unicode[STIX]{x1D70E}}$
.◻
Lemma 6.11. The field
$K(\unicode[STIX]{x1D701}_{3},\unicode[STIX]{x1D701}^{\prime \prime }\unicode[STIX]{x1D71B}^{1/3},\unicode[STIX]{x1D703})$
is a Galois extension over
$K$
.
Proof. Let
$\unicode[STIX]{x1D70E}\in W_{K}$
. It suffices to show that
$\unicode[STIX]{x1D70E}(\unicode[STIX]{x1D703})\in K(\unicode[STIX]{x1D701}_{3},\unicode[STIX]{x1D701}^{\prime \prime }\unicode[STIX]{x1D71B}^{1/3},\unicode[STIX]{x1D703})$
. We put

Then, we have
$\unicode[STIX]{x1D703}_{\unicode[STIX]{x1D70E}}^{2}-\unicode[STIX]{x1D703}_{\unicode[STIX]{x1D70E}}\equiv \unicode[STIX]{x1D70E}(\unicode[STIX]{x1D6FF})^{3}\;(\text{mod}~2/3)$
. Hence, we can find
$\unicode[STIX]{x1D703}^{\prime }$
such that
$\unicode[STIX]{x1D703}^{\prime 2}-\unicode[STIX]{x1D703}^{\prime }=\unicode[STIX]{x1D70E}(\unicode[STIX]{x1D6FF})^{3}$
and
$\unicode[STIX]{x1D703}^{\prime }\equiv \unicode[STIX]{x1D703}_{\unicode[STIX]{x1D70E}}\;(\text{mod}~2/3)$
. By the choice of
$\unicode[STIX]{x1D707}_{\unicode[STIX]{x1D70E}}$
, we have
$\unicode[STIX]{x1D703}^{\prime }=\unicode[STIX]{x1D70E}(\unicode[STIX]{x1D703})\;(\text{mod}~0+)$
. Hence, we obtain
$\unicode[STIX]{x1D703}^{\prime }=\unicode[STIX]{x1D70E}(\unicode[STIX]{x1D703})$
.
We take
$\unicode[STIX]{x1D70E}^{\prime }\in W_{K}$
such that
$\unicode[STIX]{x1D70E}^{\prime }(\unicode[STIX]{x1D703})\neq \unicode[STIX]{x1D70E}(\unicode[STIX]{x1D703})$
. We can define
$\unicode[STIX]{x1D703}_{\unicode[STIX]{x1D70E}^{\prime }}$
as above, and have
$\unicode[STIX]{x1D70E}^{\prime }(\unicode[STIX]{x1D703})\equiv \unicode[STIX]{x1D703}_{\unicode[STIX]{x1D70E}^{\prime }}\;(\text{mod}~2/3)$
. If
$\unicode[STIX]{x1D708}_{\unicode[STIX]{x1D70E}}=\unicode[STIX]{x1D708}_{\unicode[STIX]{x1D70E}^{\prime }}$
, then we have
$\unicode[STIX]{x1D701}_{3,\unicode[STIX]{x1D70E}}\unicode[STIX]{x1D70E}(\unicode[STIX]{x1D6FF})\equiv \unicode[STIX]{x1D701}_{3,\unicode[STIX]{x1D70E}^{\prime }}\unicode[STIX]{x1D70E}^{\prime }(\unicode[STIX]{x1D6FF})\;(\text{mod}~5/6)$
, which implies that
$\unicode[STIX]{x1D701}_{3,\unicode[STIX]{x1D70E}}\unicode[STIX]{x1D70E}(\unicode[STIX]{x1D6FF})=\unicode[STIX]{x1D701}_{3,\unicode[STIX]{x1D70E}^{\prime }}\unicode[STIX]{x1D70E}^{\prime }(\unicode[STIX]{x1D6FF})$
because both sides are roots of

Hence, if
$\unicode[STIX]{x1D70E}(\unicode[STIX]{x1D6FF})^{3}\neq \unicode[STIX]{x1D70E}^{\prime }(\unicode[STIX]{x1D6FF})^{3}$
, we have
$\unicode[STIX]{x1D708}_{\unicode[STIX]{x1D70E}}\neq \unicode[STIX]{x1D708}_{\unicode[STIX]{x1D70E}^{\prime }}$
, which implies that

If
$\unicode[STIX]{x1D70E}(\unicode[STIX]{x1D6FF})^{3}=\unicode[STIX]{x1D70E}^{\prime }(\unicode[STIX]{x1D6FF})^{3}$
, we have
$\unicode[STIX]{x1D70E}(\unicode[STIX]{x1D703})\not \equiv \unicode[STIX]{x1D70E}^{\prime }(\unicode[STIX]{x1D703})\;(\text{mod}~0+)$
. Therefore, we have

Then, we obtain

by Krasner’s lemma. ◻
Let
$E$
be the elliptic curve over
$k^{\text{ac}}$
defined by
$z^{2}+z=w^{3}$
. We put

We note that
$|Q|=24$
and
$Q$
is isomorphic to
$\text{SL}_{2}(\mathbb{F}_{3})$
(cf. [Reference SerreSe, 8.5. Exercices 2]). Let
$Q\rtimes \mathbb{Z}$
be a semidirect product, where
$r\in \mathbb{Z}$
acts on
$Q$
by
$g(\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D6FD},\unicode[STIX]{x1D6FE})\mapsto g(\unicode[STIX]{x1D6FC}^{q^{r}},\unicode[STIX]{x1D6FD}^{q^{r}},\unicode[STIX]{x1D6FE}^{q^{r}})$
. Then,
$Q\rtimes \mathbb{Z}$
acts faithfully on
$E$
as a scheme over
$k$
, where
$(g(\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D6FD},\unicode[STIX]{x1D6FE}),r)\in Q\rtimes \mathbb{Z}$
acts on
$E$
by

for
$k^{\text{ac}}$
-valued points.
Proposition 6.12. The element
$\unicode[STIX]{x1D70E}\in W_{K}$
sends
$\overline{\mathbf{X}}_{\unicode[STIX]{x1D701},\unicode[STIX]{x1D701}^{\prime }}$
to
$\overline{\mathbf{X}}_{\bar{\unicode[STIX]{x1D709}}_{\unicode[STIX]{x1D70E}}\unicode[STIX]{x1D701}^{q^{-r_{\unicode[STIX]{x1D70E}}}},\unicode[STIX]{x1D701}^{\prime }}$
. We identify
$\overline{\mathbf{X}}_{\unicode[STIX]{x1D701},\unicode[STIX]{x1D701}^{\prime }}$
with
$\overline{\mathbf{X}}_{\bar{\unicode[STIX]{x1D709}}_{\unicode[STIX]{x1D70E}}\unicode[STIX]{x1D701}^{q^{-r_{\unicode[STIX]{x1D70E}}}},\unicode[STIX]{x1D701}^{\prime }}$
by
$(z,w)\mapsto (z,w)$
. Then, the action of
$W_{K}$
gives a homomorphism

Proposition 6.13. The homomorphism
$\unicode[STIX]{x1D6E9}_{\unicode[STIX]{x1D701}^{\prime }}$
factors through
$W(K^{\text{ur}}(\unicode[STIX]{x1D71B}^{1/3},\unicode[STIX]{x1D703})/K)$
and gives an isomorphism
$W(K^{\text{ur}}(\unicode[STIX]{x1D71B}^{1/3},\unicode[STIX]{x1D703})/K)\simeq Q\rtimes \mathbb{Z}$
.
Proof. By Lemma 6.10(1), the homomorphism
$\unicode[STIX]{x1D6E9}_{\unicode[STIX]{x1D701}^{\prime }}$
factors through
$W(K^{\text{ur}}(\unicode[STIX]{x1D71B}^{1/3},\unicode[STIX]{x1D703})/K)$
and induces an injective homomorphism

To prove the surjectivity, it suffices to show that
$\unicode[STIX]{x1D6E9}_{\unicode[STIX]{x1D701}^{\prime }}$
sends
$I_{K}$
onto
$Q$
. Let
$g=g(\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D6FD},\unicode[STIX]{x1D6FE})\in Q$
. We take
$\unicode[STIX]{x1D701}_{\unicode[STIX]{x1D6FC}}\in \unicode[STIX]{x1D707}_{3}(K^{\text{ur}})$
,
$\unicode[STIX]{x1D708}_{\unicode[STIX]{x1D6FD}},\unicode[STIX]{x1D707}_{\unicode[STIX]{x1D6FE}}\in \unicode[STIX]{x1D707}_{3}(K^{\text{ur}})\cup \{0\}$
such that
$\bar{\unicode[STIX]{x1D701}}_{\unicode[STIX]{x1D6FC}}=\unicode[STIX]{x1D6FC}$
,
$\bar{\unicode[STIX]{x1D708}}_{\unicode[STIX]{x1D6FD}}=\unicode[STIX]{x1D6FC}^{-1}\unicode[STIX]{x1D6FD}$
and
$\bar{\unicode[STIX]{x1D707}}_{\unicode[STIX]{x1D6FE}}=\unicode[STIX]{x1D6FC}^{-1}\unicode[STIX]{x1D6FE}$
. We put
$\unicode[STIX]{x1D6FF}_{g}=\unicode[STIX]{x1D701}_{\unicode[STIX]{x1D6FC}}^{-1}(\unicode[STIX]{x1D6FF}+\unicode[STIX]{x1D708}_{\unicode[STIX]{x1D6FD}})$
and
$\unicode[STIX]{x1D703}_{g}=\unicode[STIX]{x1D703}+\unicode[STIX]{x1D708}_{\unicode[STIX]{x1D6FD}}^{2}\unicode[STIX]{x1D6FF}+\unicode[STIX]{x1D708}_{\unicode[STIX]{x1D6FD}}^{3}+\unicode[STIX]{x1D707}_{\unicode[STIX]{x1D6FE}}$
. Then, we have

Hence, we can find
$\unicode[STIX]{x1D6FF}_{g}^{\prime }$
such that
$\unicode[STIX]{x1D6FF}_{g}^{\prime 4}-\unicode[STIX]{x1D6FF}_{g}^{\prime }=1/(\unicode[STIX]{x1D701}_{\unicode[STIX]{x1D6FC}}\unicode[STIX]{x1D701}^{\prime \prime }\unicode[STIX]{x1D71B}^{1/3})$
and
$\unicode[STIX]{x1D6FF}_{g}^{\prime }\equiv \unicode[STIX]{x1D6FF}_{g}$
$(\text{mod}~5/6)$
. Further, we have
$\unicode[STIX]{x1D703}_{g}^{2}-\unicode[STIX]{x1D703}_{g}\equiv \unicode[STIX]{x1D6FF}_{g}^{\prime 3}\;(\text{mod}~2/3)$
. Hence, we can find
$\unicode[STIX]{x1D703}_{g}^{\prime }$
such that
$\unicode[STIX]{x1D703}_{g}^{\prime 2}-\unicode[STIX]{x1D703}_{g}^{\prime }=\unicode[STIX]{x1D6FF}_{g}^{\prime 3}$
and
$\unicode[STIX]{x1D703}_{g}^{\prime }\equiv \unicode[STIX]{x1D703}_{g}\;(\text{mod}~2/3)$
. Then,
$\unicode[STIX]{x1D71B}^{1/3}\mapsto \unicode[STIX]{x1D701}_{\unicode[STIX]{x1D6FC}}\unicode[STIX]{x1D71B}^{1/3}$
, and
$\unicode[STIX]{x1D703}\mapsto \unicode[STIX]{x1D703}_{g}^{\prime }$
gives an element of
$I_{K}$
, whose image by
$\unicode[STIX]{x1D6E9}_{\unicode[STIX]{x1D701}^{\prime }}$
is
$g$
.◻
7 Cohomology of
$\mathbf{X}_{1}(\mathfrak{p}^{3})$
In this section, we show that the covering
${\mathcal{C}}_{1}(\mathfrak{p}^{3})$
is semistable, and study a structure of
$\ell$
-adic cohomology of
$\mathbf{X}_{1}(\mathfrak{p}^{3})$
. In the following, for a projective smooth curve
$X$
over
$k$
, we simply write
$H^{1}(X,\overline{\mathbb{Q}}_{\ell })$
for
$H^{1}(X_{k^{\text{ac}}},\overline{\mathbb{Q}}_{\ell })$
. For a finite abelian group
$A$
, the character group
$\text{Hom}_{\mathbb{Z}}(A,\overline{\mathbb{Q}}_{\ell }^{\times })$
is denoted by
$A^{\vee }$
.
7.1 Cohomology of reductions
Let
$X_{\text{DL}}$
be the smooth compactification of the affine curve over
$k$
defined by
$X^{q}-X=Y^{q+1}$
. The curve
$X_{\text{DL}}$
is also the smooth compactification of the Deligne–Lusztig curve
$x^{q}y-xy^{q}=1$
for
$\text{SL}_{2}(\mathbb{F}_{q})$
. Then,
$a\in k$
acts on
$X_{\text{DL}}$
by

On the other hand,
$\unicode[STIX]{x1D701}\in k_{2}^{\times }$
acts on
$X_{\text{DL}}$
by

By these actions, we consider
$H^{1}(X_{\text{DL}},\overline{\mathbb{Q}}_{\ell })$
as a
$\overline{\mathbb{Q}}_{\ell }[k\times k_{2}^{\times }]$
-module.
Lemma 7.1. We have an isomorphism

as
$\overline{\mathbb{Q}}_{\ell }[k\times \unicode[STIX]{x1D707}_{q+1}(k_{2})]$
-modules.
Proof. As
$\overline{\mathbb{Q}}_{\ell }[k\times \unicode[STIX]{x1D707}_{q+1}(k_{2})]$
-modules, we have the short exact sequence

Let
${\mathcal{L}}_{\unicode[STIX]{x1D713}}$
denote the Artin–Schreier
$\overline{\mathbb{Q}}_{\ell }$
-sheaf associated to
$\unicode[STIX]{x1D713}\in k^{\vee }$
. Let
${\mathcal{K}}_{\unicode[STIX]{x1D712}}$
denote the Kummer
$\overline{\mathbb{Q}}_{\ell }$
-sheaf associated to
$\unicode[STIX]{x1D712}\in \unicode[STIX]{x1D707}_{q+1}(k_{2})^{\vee }$
. Since

is a finite etale Galois covering with a Galois group
$k\times \unicode[STIX]{x1D707}_{q+1}(k_{2})$
, we have the isomorphism

as
$\overline{\mathbb{Q}}_{\ell }[k\times \unicode[STIX]{x1D707}_{q+1}(k_{2})]$
-modules. Note that we have

if
$\unicode[STIX]{x1D713}\neq 1$
by the Grothendieck–Ogg–Shafarevich formula (cf. [Reference GrothendieckSGA5, Exposé X, Théorème 7.1]). Clearly, if
$\unicode[STIX]{x1D712}\neq 1$
, we have
$H_{c}^{1}(\mathbb{G}_{m},{\mathcal{K}}_{\unicode[STIX]{x1D712}})=0$
and
$H_{c}^{1}(\mathbb{G}_{m},{\mathcal{L}}_{\unicode[STIX]{x1D713}})\simeq \unicode[STIX]{x1D713}$
. Hence, we acquire the isomorphism

as
$\overline{\mathbb{Q}}_{\ell }[k\times \unicode[STIX]{x1D707}_{q+1}(k_{2})]$
-modules. By (7.1), (7.2) and (7.3), the required assertion follows.◻
For a character
$\unicode[STIX]{x1D713}\in k^{\vee }$
and an element
$\unicode[STIX]{x1D701}\in k^{\times }$
, we denote by
$\unicode[STIX]{x1D713}_{\unicode[STIX]{x1D701}}$
the character
$x\mapsto \unicode[STIX]{x1D713}(\unicode[STIX]{x1D701}x)$
. We consider a character group
$(k^{\times })^{\vee }$
as a subgroup of
$(k_{2}^{\times })^{\vee }$
by
$\text{Nr}_{k_{2}/k}^{\vee }$
.
Lemma 7.2. We have an isomorphism

as
$\overline{\mathbb{Q}}_{\ell }[k_{2}^{\times }]$
-modules.
Proof. By Lemma 7.1, we take a basis

of
$H^{1}(X_{\text{DL}},\overline{\mathbb{Q}}_{\ell })$
over
$\overline{\mathbb{Q}}_{\ell }$
such that
$k\times \unicode[STIX]{x1D707}_{q+1}(k_{2})$
acts on
$e_{\unicode[STIX]{x1D713},\unicode[STIX]{x1D712}}$
by
$\unicode[STIX]{x1D713}\otimes \unicode[STIX]{x1D712}$
. For
$\unicode[STIX]{x1D701}\in k_{2}^{\times }$
and
$a\in k$
, we have

in
$\text{Aut}_{k_{2}}(X_{\text{DL}})$
. Hence,
$\unicode[STIX]{x1D701}\in k_{2}^{\times }$
acts on
$H^{1}(X_{\text{DL}},\overline{\mathbb{Q}}_{\ell })$
by

with some constant
$c_{\unicode[STIX]{x1D713},\unicode[STIX]{x1D712},\unicode[STIX]{x1D701}}\in \overline{\mathbb{Q}}_{\ell }^{\times }$
. Therefore, we acquire an isomorphism

as
$\overline{\mathbb{Q}}_{\ell }[k_{2}^{\times }]$
-modules. Hence, the required assertion follows.◻
Proposition 7.3. We have isomorphisms

as
$(I_{K}\times {\mathcal{O}}_{D}^{\times })$
-representations over
$\overline{\mathbb{Q}}_{\ell }$
.
Let
$X_{\text{AS}}$
be the smooth compactification of the affine curve
$X_{\text{AS}}^{\prime }$
over
$k$
defined by
$z^{q}-z=w^{2}$
. Let
$a\in k$
act on
$X_{\text{AS}}$
by

By this action, we consider
$H^{1}(X_{\text{AS}},\overline{\mathbb{Q}}_{\ell })$
as a
$\overline{\mathbb{Q}}_{\ell }[k]$
-module. On the other hand, let
$b\in \unicode[STIX]{x1D707}_{2(q-1)}(k^{\text{ac}})$
act on
$X_{\text{AS}}$
by

Lemma 7.4. We assume that
$q$
is odd. Let
$G$
be the Galois group of the Galois extension
$F$
over
$k((s))$
defined by
$z^{q}-z=1/s^{2}$
. Let
$G^{r}$
be the upper numbering ramification filtration of
$G$
. Then,
$G^{r}=G$
if
$r\leqslant 2$
, and
$G^{r}=1$
if
$r>2$
.
Proof. We take
$a\in F$
such that
$a^{q}-a=1/s^{2}$
. Then,
$sa^{(q-1)/2}$
is a uniformizer of
$F$
. Let
$v_{F}$
be the normalized valuation of
$F$
. For
$\unicode[STIX]{x1D70E}\in G$
and an integer
$i$
, the condition

is equivalent to the condition

Hence, the claim follows. ◻
For a character
$\unicode[STIX]{x1D713}\in k^{\vee }$
and
$x\in k^{\times }$
, we write
$\unicode[STIX]{x1D713}_{x}\in k^{\vee }$
for the character
$y\mapsto \unicode[STIX]{x1D713}(xy)$
. We set

as
$\overline{\mathbb{Q}}_{\ell }[k]$
-modules. Let
$\{e_{\unicode[STIX]{x1D713}}\}_{\unicode[STIX]{x1D713}\in k^{\vee }\backslash \{1\}}$
be the standard basis of
$V$
.
Lemma 7.5. We assume that
$q$
is odd.
-
(1) Then, we have
$H^{1}(X_{\text{AS}},\overline{\mathbb{Q}}_{\ell })\simeq V$ as
$\overline{\mathbb{Q}}_{\ell }[k]$ -modules.
-
(2) For
$b\in \unicode[STIX]{x1D707}_{2(q-1)}(k^{\text{ac}})$ , the automorphism
$\unicode[STIX]{x1D6FD}_{b}$ of
$X_{\text{AS}}$ induces the action
$$\begin{eqnarray}e_{\unicode[STIX]{x1D713}}\mapsto c_{\unicode[STIX]{x1D713},b}e_{\unicode[STIX]{x1D713}_{b^{-2}}}\end{eqnarray}$$
$H^{1}(X_{\text{AS}},\overline{\mathbb{Q}}_{\ell })\simeq V$ with some constant
$c_{\unicode[STIX]{x1D713},b}\in \overline{\mathbb{Q}}_{\ell }^{\times }$ . Furthermore, we have
$c_{\unicode[STIX]{x1D713},-1}=-1$ .
Proof. We have
$H^{1}(X_{\text{AS}},\overline{\mathbb{Q}}_{\ell })\simeq H_{c}^{1}(X_{\text{AS}}^{\prime },\overline{\mathbb{Q}}_{\ell })$
, because the complement
$X_{\text{AS}}\backslash X_{\text{AS}}^{\prime }$
consists of one point. The curve
$X_{\text{AS}}^{\prime }$
is a finite etale Galois covering of
$\mathbb{A}^{1}$
with a Galois group
$k$
by
$(z,w)\mapsto w$
. For
$\unicode[STIX]{x1D713}\in k^{\vee }$
, let
${\mathcal{L}}_{2,\unicode[STIX]{x1D713}}$
be the smooth
$\overline{\mathbb{Q}}_{\ell }$
-sheaf on
$\mathbb{A}^{1}$
defined by the covering
$X_{\text{AS}}^{\prime }$
and
$\unicode[STIX]{x1D713}$
. Then, we have

as
$\overline{\mathbb{Q}}_{\ell }[k]$
-modules. By Lemma 7.4 and the Grothendieck–Ogg–Shafarevich formula, we have

and
$H_{c}^{1}(\mathbb{A}^{1},{\mathcal{L}}_{2,\unicode[STIX]{x1D713}})\simeq \unicode[STIX]{x1D713}$
as
$\overline{\mathbb{Q}}_{\ell }[k]$
-modules for
$\unicode[STIX]{x1D713}\in k^{\vee }\backslash \{1\}$
. Hence, the first assertion follows.
The second assertion follows from the fact that
$\unicode[STIX]{x1D6FD}_{b}\unicode[STIX]{x1D6FC}_{a}\unicode[STIX]{x1D6FD}_{b}^{-1}=\unicode[STIX]{x1D6FC}_{ab^{2}}$
for
$a\in k$
and
$b\in \unicode[STIX]{x1D707}_{2(q-1)}(k^{\text{ac}})$
. The assertion
$c_{\unicode[STIX]{x1D713},-1}=-1$
follows from the Lefschetz trace formula.◻
We put

We take
$\unicode[STIX]{x1D701}_{0}\in \unicode[STIX]{x1D707}_{2(q^{2}-1)}(k^{\text{ac}})\backslash k_{2}^{\times }$
. Let
$\unicode[STIX]{x1D6E5}\in (k^{\times })^{\vee }$
be the character defined by

for
$x\in k^{\times }$
. If
$q$
is odd, we put

for
$\unicode[STIX]{x1D712}\in (k^{\times })^{\vee }$
and
$\unicode[STIX]{x1D713}\in k^{\vee }\backslash \{1\}$
. We note that

For different
$\unicode[STIX]{x1D713},\unicode[STIX]{x1D713}^{\prime }\in k^{\vee }\backslash \{1\}$
, we can check that
$\unicode[STIX]{x1D70F}_{\unicode[STIX]{x1D712},\unicode[STIX]{x1D713}}=\unicode[STIX]{x1D70F}_{\unicode[STIX]{x1D712},\unicode[STIX]{x1D713}^{\prime }}$
if and only if
$\unicode[STIX]{x1D713}^{\prime }=\unicode[STIX]{x1D713}^{-1}$
, and
$\unicode[STIX]{x1D70C}_{\unicode[STIX]{x1D712},\unicode[STIX]{x1D713}}=\unicode[STIX]{x1D70C}_{\unicode[STIX]{x1D712},\unicode[STIX]{x1D713}^{\prime }}$
if and only if
$\unicode[STIX]{x1D713}^{\prime }=\unicode[STIX]{x1D713}^{-1}$
. Similar conditions hold also for
$\unicode[STIX]{x1D70F}_{\unicode[STIX]{x1D712},\unicode[STIX]{x1D713}}^{\prime }$
and
$\unicode[STIX]{x1D70C}_{\unicode[STIX]{x1D712},\unicode[STIX]{x1D713}}^{\prime }$
. We define an equivalence relation
${\sim}$
on
$k^{\vee }\backslash \{1\}$
by
$\unicode[STIX]{x1D713}\sim \unicode[STIX]{x1D713}^{-1}$
. We put

for
$\unicode[STIX]{x1D712}\in (k^{\times })^{\vee }$
and
$\unicode[STIX]{x1D713}\in k^{\vee }\backslash \{1\}$
.
Proposition 7.6. We assume that
$q$
is odd. Then, we have an isomorphism

as representations of
$I_{K}\times {\mathcal{O}}_{D}^{\times }$
.
Proof. The actions of
$I_{L}$
and
$U_{D}$
on
$\bigoplus _{\unicode[STIX]{x1D701}\in k^{\times }}H^{1}(\overline{\mathbf{X}}_{\unicode[STIX]{x1D701}}^{\text{c}},\overline{\mathbb{Q}}_{\ell })$
factor through
$k^{\times }\times k$
by Proposition 5.4 and Corollary 6.5. On the other hand, the action of
$k^{\times }\times k$
on
$\bigoplus _{\unicode[STIX]{x1D701}\in k^{\times }}H^{1}(\overline{\mathbf{X}}_{\unicode[STIX]{x1D701}}^{\text{c}},\overline{\mathbb{Q}}_{\ell })$
is induced from the action of
$\{1\}\times k$
on
$H^{1}(\overline{\mathbf{X}}_{1}^{\text{c}},\overline{\mathbb{Q}}_{\ell })$
. Hence, we have

as representations of
$k^{\times }\times k$
by Lemma 7.5.1. Therefore, we have an isomorphism

as representations of
$I_{L}\times U_{D}$
by Proposition 5.4, Corollary 6.5 and Lemma 7.5.2. Inducing this representation from
$U_{D}$
to
${\mathcal{O}}_{D}^{\times }$
, we obtain an isomorphism

as representations of
$I_{L}\times {\mathcal{O}}_{D}^{\times }$
. On the left-hand side of this isomorphism, we have an action of
$I_{K}$
that commutes with the action of
${\mathcal{O}}_{D}^{\times }$
. Hence, we have

as representations of
$I_{K}\times {\mathcal{O}}_{D}^{\times }$
. By similar arguments, we have

as representations of
$I_{K}\times {\mathcal{O}}_{D}^{\times }$
. Therefore, we have the isomorphism in the assertion.◻
Let
$E$
and
$Q$
be as in Section 6.2.2. Let
$Z\subset Q$
be the subgroup consisting of
$g(1,0,\unicode[STIX]{x1D6FE})$
with
$\unicode[STIX]{x1D6FE}^{2}+\unicode[STIX]{x1D6FE}=0$
, and let
$\unicode[STIX]{x1D719}$
be the unique nontrivial character of
$Z$
. By [Reference Bushnell and HenniartBH, Lemma 22.2], there exists a unique irreducible two-dimensional representation
$\unicode[STIX]{x1D70F}$
of
$Q$
such that

for
$\unicode[STIX]{x1D6FC}\in \mathbb{F}_{4}^{\times }\backslash \{1\}$
. Then, it is easily checked that the determinant character of
$\unicode[STIX]{x1D70F}$
is trivial. Note that every two-dimensional irreducible representation of
$Q$
has a form
$\unicode[STIX]{x1D70F}\otimes \unicode[STIX]{x1D712}$
with
$\unicode[STIX]{x1D712}\in (\mathbb{F}_{4}^{\times })^{\vee }$
, where we consider
$\unicode[STIX]{x1D712}$
as a character of
$Q$
by
$g(\unicode[STIX]{x1D6FC},\unicode[STIX]{x1D6FD},\unicode[STIX]{x1D6FE})\mapsto \unicode[STIX]{x1D712}(\unicode[STIX]{x1D6FC})$
.
Lemma 7.7. The
$Q$
-representation
$H^{1}(E,\overline{\mathbb{Q}}_{\ell })$
is isomorphic to
$\unicode[STIX]{x1D70F}$
.
Proof. The
$Q$
-representation
$H^{1}(E,\overline{\mathbb{Q}}_{\ell })$
satisfies (7.4) by Lemma 7.1. Hence, the assertion follows.◻
Let
$\unicode[STIX]{x1D70F}_{\unicode[STIX]{x1D701}^{\prime }}$
be the representation of
$W_{K}$
induced from the
$(Q\rtimes \mathbb{Z})$
-representation
$H^{1}(E,\overline{\mathbb{Q}}_{\ell })$
by
$\unicode[STIX]{x1D6E9}_{\unicode[STIX]{x1D701}^{\prime }}$
. Then, the restriction to
$I_{K}$
of
$\unicode[STIX]{x1D70F}_{\unicode[STIX]{x1D701}^{\prime }}$
is isomorphic to the representation induced from
$\unicode[STIX]{x1D70F}$
by Lemma 7.7.
We say that a continuous two-dimensional irreducible representation
$V$
of
$W_{K}$
over
$\overline{\mathbb{Q}}_{\ell }$
is primitive, if there is no pair of a quadratic extension
$K^{\prime }$
and a continuous character
$\unicode[STIX]{x1D712}$
of
$W_{K^{\prime }}$
such that
$V\simeq \text{Ind}_{W_{K^{\prime }}}^{W_{K}}\,\unicode[STIX]{x1D712}$
.
Lemma 7.8. The representation
$\unicode[STIX]{x1D70F}_{\unicode[STIX]{x1D701}^{\prime }}$
is primitive of Artin conductor
$3$
.
Proof. We use the notations in the proof of Lemma 6.11. The element
$1/(\unicode[STIX]{x1D71B}^{1/3}\unicode[STIX]{x1D703}^{3})$
is a uniformizer of
$K^{\text{ur}}(\unicode[STIX]{x1D71B}^{1/3},\unicode[STIX]{x1D703})$
. For
$\unicode[STIX]{x1D70E}\in I_{K}$
, we can show that

using
$\unicode[STIX]{x1D70E}(\unicode[STIX]{x1D703})\equiv \unicode[STIX]{x1D703}_{\unicode[STIX]{x1D70E}}\;(\text{mod}~2/3)$
. The claim on the Artin conductor follows from this.
The unique index-
$2$
subgroup of
$Q\rtimes \mathbb{Z}$
is
$Q\rtimes 2\mathbb{Z}$
, because
$Q$
has no index-
$2$
subgroup. Hence, if
$\unicode[STIX]{x1D70F}_{\unicode[STIX]{x1D701}^{\prime }}$
is not primitive, it is induced from a character of
$W_{K_{2}}$
. However, this is impossible, because the restriction of
$\unicode[STIX]{x1D70F}_{\unicode[STIX]{x1D701}^{\prime }}$
to
$W_{K_{2}}$
is irreducible.◻
We define a character
$\unicode[STIX]{x1D706}_{\unicode[STIX]{x1D709}}:W_{K}\rightarrow k^{\times }$
by
$\unicode[STIX]{x1D706}_{\unicode[STIX]{x1D709}}(\unicode[STIX]{x1D70E})=\bar{\unicode[STIX]{x1D709}}_{\unicode[STIX]{x1D70E}}$
. We put

for
$\unicode[STIX]{x1D701}^{\prime }\in k^{\times }$
and
$\unicode[STIX]{x1D712}\in (k^{\times })^{\vee }$
. In the following, we consider
$\unicode[STIX]{x1D70F}_{\unicode[STIX]{x1D701}^{\prime },\unicode[STIX]{x1D712}}$
as a representation of
$I_{K}$
.
Proposition 7.9. We assume that
$q$
is even. Let
$\unicode[STIX]{x1D701}^{\prime }\in k^{\times }$
. Then, we have an isomorphism

as representations of
$I_{K}\times {\mathcal{O}}_{D}^{\times }$
.
Proof. The actions of
$I_{K}$
and
$U_{D}$
on
$\bigoplus _{\unicode[STIX]{x1D701}\in k^{\times }}H^{1}(\overline{\mathbf{X}}_{\unicode[STIX]{x1D701},\unicode[STIX]{x1D701}^{\prime }}^{\text{c}},\overline{\mathbb{Q}}_{\ell })$
factor through
$Q\times k^{\times }$
by Propositions 5.4 and 6.12. On the other hand, the action of
$Q\times k^{\times }$
on
$\bigoplus _{\unicode[STIX]{x1D701}\in k^{\times }}H^{1}(\overline{\mathbf{X}}_{\unicode[STIX]{x1D701},\unicode[STIX]{x1D701}^{\prime }}^{\text{c}},\overline{\mathbb{Q}}_{\ell })$
is induced from the action of
$Q$
on
$H^{1}(\overline{\mathbf{X}}_{1,\unicode[STIX]{x1D701}^{\prime }}^{\text{c}},\overline{\mathbb{Q}}_{\ell })$
. Hence, we have an isomorphism

as representations of
$Q\times k^{\times }$
. Therefore, we have an isomorphism

as representations of
$I_{K}\times U_{D}$
by Propositions 5.4 and 6.12. Inducing this representation from
$U_{D}$
to
${\mathcal{O}}_{D}^{\times }$
, we obtain the isomorphism in the assertion.◻
7.2 Genus calculation
Lemma 7.10. We have
$\dim H_{\text{c}}^{1}(\mathbf{X}_{1}(\mathfrak{p}^{3})_{\mathbf{C}},\overline{\mathbb{Q}}_{\ell })=2q^{3}-2q+1$
.
Proof. It suffices to show that

because we have

For an irreducible smooth representation
$\unicode[STIX]{x1D70B}$
of
$\text{GL}_{2}(K)$
, we write
$c(\unicode[STIX]{x1D70B})$
for the conductor of
$\unicode[STIX]{x1D70B}$
. By Proposition 2.1, we have

where
$\unicode[STIX]{x1D70B}$
runs through irreducible cuspidal representations of
$\text{GL}_{2}(K)$
such that
$c(\unicode[STIX]{x1D70B})\leqslant 3$
and
$\unicode[STIX]{x1D714}_{\unicode[STIX]{x1D70B}}(\unicode[STIX]{x1D71B})=1$
, and
$\unicode[STIX]{x1D712}$
runs through characters of
$K^{\times }$
such that
$c(\text{St}\otimes \unicode[STIX]{x1D712})\leqslant 3$
and
$\unicode[STIX]{x1D712}(\unicode[STIX]{x1D71B}^{2})=1$
. We have the following list of discrete series representations
$\unicode[STIX]{x1D70B}$
of
$\text{GL}_{2}(K)$
such that
$c(\unicode[STIX]{x1D70B})\leqslant 3$
and
$\unicode[STIX]{x1D714}_{\unicode[STIX]{x1D70B}}(\unicode[STIX]{x1D71B})=1$
.
-
(1)
$\unicode[STIX]{x1D70B}\simeq \text{St}\otimes \unicode[STIX]{x1D712}$ for an unramified character
$\unicode[STIX]{x1D712}:K^{\times }\rightarrow \overline{\mathbb{Q}}_{\ell }^{\times }$ such that
$\unicode[STIX]{x1D712}(\unicode[STIX]{x1D71B}^{2})=1$ . Then,
$c(\unicode[STIX]{x1D70B})=1$ and
$\dim \text{LJ}(\unicode[STIX]{x1D70B})=1$ . There are two such representations.
-
(2)
$\unicode[STIX]{x1D70B}\simeq \text{St}\otimes \unicode[STIX]{x1D712}$ for a tamely ramified character
$\unicode[STIX]{x1D712}:K^{\times }\rightarrow \overline{\mathbb{Q}}_{\ell }^{\times }$ that is not unramified and satisfies
$\unicode[STIX]{x1D712}(\unicode[STIX]{x1D71B}^{2})=1$ . Then,
$c(\unicode[STIX]{x1D70B})=2$ and
$\dim \text{LJ}(\unicode[STIX]{x1D70B})=1$ . There are
$2(q-2)$ such representations.
-
(3)
$\unicode[STIX]{x1D70B}\simeq \unicode[STIX]{x1D70B}_{\unicode[STIX]{x1D712}}$ , in the notation of [Reference Bushnell and HenniartBH, 19.1], for a character
$\unicode[STIX]{x1D712}:K_{2}^{\times }\rightarrow \overline{\mathbb{Q}}_{\ell }^{\times }$ of level zero such that
$\unicode[STIX]{x1D712}$ does not factor through
$\text{Nr}_{K_{2}/K}$ and
$\unicode[STIX]{x1D712}(\unicode[STIX]{x1D71B})=1$ . Then,
$c(\unicode[STIX]{x1D70B})=2$ and
$\dim \text{LJ}(\unicode[STIX]{x1D70B})=2$ . There are
$q(q-1)/2$ such representations.
-
(4) The cuspidal representations
$\unicode[STIX]{x1D70B}$ of
$\text{GL}_{2}(K)$ such that
$c(\unicode[STIX]{x1D70B})=3$ and
$\unicode[STIX]{x1D714}_{\unicode[STIX]{x1D70B}}(\unicode[STIX]{x1D71B})=1$ . Then,
$\dim \text{LJ}(\unicode[STIX]{x1D70B})=q+1$ by [Reference TunnellTu, Theorem 3.6]. There are
$2(q-1)^{2}$ such representations by [Reference TunnellTu, Theorem 3.9].
We note that
$\dim \unicode[STIX]{x1D70B}^{K_{1}(\mathfrak{p}^{3})}=4-c(\unicode[STIX]{x1D70B})$
if
$\unicode[STIX]{x1D70B}$
is a discrete series representation of
$\text{GL}_{2}(K)$
such that
$c(\unicode[STIX]{x1D70B})\leqslant 3$
. Then, we obtain the claim by taking a summation according to the above list.◻
For an affinoid rigid space
$X$
, a Zariski subaffinoid of
$X$
is the inverse image of a nonempty open subscheme of
$\overline{X}$
under the reduction map
$X\rightarrow \overline{X}$
.
Proposition 7.11. Let
$W$
be a wide open rigid curve over a finite extension of
$\widehat{K}^{\text{ur}}$
with a stable covering
$\{(U_{i},U_{i}^{\text{u}})\}_{i\in I}$
. Let
$X$
be a subaffinoid space of
$W$
such that
$\overline{X}$
is a connected smooth curve with a positive genus. Then, there exists
$i\in I$
such that
$X$
is a Zariski subaffinoid of
$U_{i}^{\text{u}}$
.
Proof. Assume that
$X\cap U_{i}^{\text{u}}$
is contained in a finite union of residue classes of
$X$
for any
$i\in I$
. Then, a Zariski subaffinoid of
$X$
appears in an open annulus. This is a contradiction, because
$\overline{X}$
has a positive genus. Hence, there exists
$i^{\prime }\in I$
such that
$X\cap U_{i^{\prime }}^{\text{u}}$
is not contained in any finite union of residue class of
$X$
. We fix such
$i^{\prime }$
in the following.
Then, some open irreducible subscheme of the reduction of
$X\cap U_{i^{\prime }}^{\text{u}}$
does not go to one point in
$\overline{X}$
under the natural map
$\overline{X\cap U_{i^{\prime }}^{\text{u}}}\rightarrow \overline{X}$
. Let
$Y$
be the inverse image of such an open subscheme under the reduction map
$X\cap U_{i^{\prime }}^{\text{u}}\rightarrow \overline{X\cap U_{i^{\prime }}^{\text{u}}}$
. Then, we see that
$Y$
is a Zariski subaffinoid of
$X$
by [Reference Coleman and McMurdyCM, Lemma 2.24(i)]. Each connected component of
$X\setminus Y$
is an open disk, and is included in
$U_{i^{\prime }}^{\text{u}}$
or
$U_{i}^{\text{u}}$
for
$i\neq i^{\prime }$
or an open annulus outside the underlying affinoids. This can be checked by applying [Reference Coleman and McMurdyCM, Corollary 2.39] to every closed disk in a connected component of
$X\setminus Y$
. Hence,
$X\cap U_{i^{\prime }}^{\text{u}}$
is a Zariski subaffinoid of
$X$
. If
$X\cap U_{i^{\prime }}^{\text{u}}\neq X$
, then
$U_{i^{\prime }}^{\text{u}}$
is connected to an open disk in
$U_{i}^{\text{u}}$
for
$i\neq i^{\prime }$
or in an open annulus outside the underlying affinoids. This is a contradiction. Therefore, we have
$X\subset U_{i}^{\text{u}}$
. Then, we obtain the claim by [Reference Coleman and McMurdyCM, Lemma 2.24(i)].◻
Lemma 7.12. Let
$W$
be a wide open rigid curve over a finite extension of
$\widehat{K}^{\text{ur}}$
with a stable covering. Let
$X$
be a subaffinoid space of
$W$
such that
$\overline{X}$
is a connected smooth curve with genus zero. Then, there is a basic wide open subspace of
$W$
such that its underlying affinoid is
$X$
.
Proof. We note that we have the claim if
$X$
appears in an open subannulus of
$W$
. Let
$\{(U_{i},U_{i}^{\text{u}})\}_{i\in I}$
be the stable covering of
$W$
.
First, we consider the case where
$X\cap U_{i}^{\text{u}}$
is contained in a finite union of residue classes of
$X$
for any
$i\in I$
. Then, a Zariski subaffinoid of
$X$
appears in an open annulus. Further,
$X$
itself appears in the open annulus, because
$X$
is connected. Hence, we have the claim in this case.
Therefore, we may assume that there exists
$i^{\prime }\in I$
such that
$X\cap U_{i^{\prime }}^{\text{u}}$
is not contained in any finite union of residue class of
$X$
. We fix such
$i^{\prime }$
. By the same argument as in the proof of Proposition 7.11, we have
$X\subset U_{i}^{\text{u}}$
. If the image of the induced map
$\overline{X}\rightarrow \overline{U}_{i}^{\text{u}}$
is one point, we have the claim because
$X$
appears in an open disk. Otherwise,
$X$
is a Zariski subaffinoid of
$U_{i}^{\text{u}}$
, and we have the claim.◻
We consider the natural level-lowering map

Lemma 7.13. The connected components of
$\mathbf{W}_{1,2^{\prime }}$
,
$\mathbf{W}_{1,3^{\prime }}$
,
$\mathbf{W}_{2,1^{\prime }}$
and
$\mathbf{W}_{4,1^{\prime }}\cup \mathbf{W}_{5,1^{\prime }}\cup \mathbf{W}_{6,1^{\prime }}$
are not open balls.
Proof. Let
$\mathbf{W}_{0}^{\prime }$
be a subannulus of
$\mathbf{W}_{0}$
defined by
$v(u)<1/(q(q+1))$
. Then, we have
$\unicode[STIX]{x1D70B}_{f}^{-1}(\mathbf{W}_{k^{\times }})=\mathbf{W}_{2,1^{\prime }}$
,
$\unicode[STIX]{x1D70B}_{f}^{-1}(\mathbf{W}_{\infty })=\mathbf{W}_{4,1^{\prime }}\cup \mathbf{W}_{5,1^{\prime }}\cup \mathbf{W}_{6,1^{\prime }}$
and
$\unicode[STIX]{x1D70B}_{f}^{-1}(\mathbf{W}_{0}^{\prime })=\mathbf{W}_{1,2^{\prime }}\cup \mathbf{W}_{1,3^{\prime }}$
. Hence, we have the claim by Proposition 3.1 and [Reference ColemanCo, Lemma 1.4].◻
The smooth projective curves
$\overline{\mathbf{Y}}_{1,2}^{\text{c}}$
and
$\overline{\mathbf{Y}}_{2,1}^{\text{c}}$
have defining equations
$X^{q}Y-XY^{q}=Z^{q+1}$
determined by the equation in Propositions 4.2 and 4.3. The infinity points of
$\overline{\mathbf{Y}}_{1,2}$
in
$\mathbb{P}_{k}^{2}$
consist of
$P_{a}^{+}=(a,1,0)$
for
$a\in k$
and
$P_{\infty }^{+}=(1,0,0)$
. The infinity points of
$\overline{\mathbf{Y}}_{2,1}$
consist of
$P_{a}^{-}=(a,1,0)$
for
$a\in k$
and
$P_{\infty }^{-}=(1,0,0)$
.
For a wide open space
$W$
, let
$e(W)$
be the number of ends of
$W$
, and let
$g(W)$
be the genus of
$W$
(cf. [Reference Coleman and McMurdyCM, p. 369 and p. 380]). For a proper smooth curve
$C$
over
$k^{\text{ac}}$
, we write
$g(C)$
for the genus of
$C$
.
Theorem 7.14. The covering
${\mathcal{C}}_{1}(\mathfrak{p}^{3})$
is a semistable covering of
$\mathbf{X}_{1}(\mathfrak{p}^{3})$
over some finite extension.
Proof. We consider the stable covering of
$\mathbf{X}_{1}(\mathfrak{p}^{3})_{\mathbf{C}}$
by Proposition 4.11. Then,
$\overline{\mathbf{Y}}_{1,2}^{\text{c}}$
and
$\overline{\mathbf{Y}}_{2,1}^{\text{c}}$
appear in the stable reduction of
$\mathbf{X}_{1}(\mathfrak{p}^{3})_{\mathbf{C}}$
as irreducible components by Proposition 7.11. The point
$P_{0}^{+}$
is the unique infinity point of
$\overline{\mathbf{Y}}_{1,2}$
whose tube is contained in
$\mathbf{W}_{1,1^{\prime }}^{+}$
, because
$v(X_{3})>1/(q^{3}(q^{2}-1))$
in
$\mathbf{W}_{1,1^{\prime }}^{+}$
. Similarly,
$P_{0}^{-}$
is the unique infinity point of
$\overline{\mathbf{Y}}_{2,1}$
whose tube is contained in
$\mathbf{W}_{1,1^{\prime }}^{-}$
. Hence, we have
$e(\mathbf{X}_{1}(\mathfrak{p}^{3})_{\mathbf{C}})\geqslant 2q$
by Lemma 7.13. Therefore, we have
$g(\mathbf{X}_{1}(\mathfrak{p}^{3})_{\mathbf{C}})\leqslant q^{3}-2q+1$
by Lemma 7.10. On the other hand, we have

where the summation on the right-hand side is
$q^{3}-2q+1$
by Propositions 7.3, 7.6 and 7.9. Then, the affinoids
$\mathbf{Y}_{1,2}$
,
$\mathbf{Y}_{2,1}$
,
$\mathbf{X}_{\unicode[STIX]{x1D701}}$
for
$\unicode[STIX]{x1D701}\in \unicode[STIX]{x1D707}_{2(q^{2}-1)}(k^{\text{ac}})$
and
$\mathbf{X}_{\unicode[STIX]{x1D701},\unicode[STIX]{x1D701}^{\prime }}$
for
$\unicode[STIX]{x1D701}\in k_{2}^{\times }$
and
$\unicode[STIX]{x1D701}^{\prime }\in k^{\times }$
are underlying affinoids of basic wide open spaces in the stable covering by Proposition 7.11 and Lemma 7.13. Therefore, by the above genus inequalities, we see that
$e(\mathbf{X}_{1}(\mathfrak{p}^{3})_{\mathbf{C}})=2q$
, and the connected components of
$\mathbf{W}_{1,2^{\prime }}$
,
$\mathbf{W}_{1,3^{\prime }}$
,
$\mathbf{W}_{2,1^{\prime }}$
and
$\mathbf{W}_{4,1^{\prime }}\cup \mathbf{W}_{5,1^{\prime }}\cup \mathbf{W}_{6,1^{\prime }}$
are open annuli.
The connected components of
$\mathbf{X}_{1}(\mathfrak{p}^{3})\setminus \mathbf{Z}_{1,1}^{0}$
are two wide open spaces, because each connected component is connected to
$\mathbf{Z}_{1,1}^{0}$
at an open subannulus by Lemma 7.12. Then, we see that these two wide open spaces are basic wide open spaces with underlying affinoids
$\mathbf{Y}_{1,2}$
and
$\mathbf{Y}_{2,1}$
by the above genus inequalities. Therefore, we have the claim by Propositions 4.7, 4.9 and 4.10.◻
7.3 Structure of cohomology
In this subsection, we study the action of
$I_{K}\times {\mathcal{O}}_{D}^{\times }$
on
$\ell$
-adic cohomology of
$\mathbf{X}_{1}(\mathfrak{p}^{3})$
. We put

Although it is possible to study the action of
$(W_{K}\times D^{\times })^{0}$
using the result of Section 6, here we study only the inertia action for simplicity. The result in this subsection is essentially used in [Reference Imai and TsushimaIT3].
Let
${\mathcal{X}}_{1}(\mathfrak{p}^{3})$
be the semistable formal scheme constructed from
${\mathcal{C}}_{1}(\mathfrak{p}^{3})$
by [Reference Imai and TsushimaIT2, Theorem 3.5]. The semistable reduction of
${\mathcal{X}}_{1}(\mathfrak{p}^{3})$
means the underlying reduced scheme of
${\mathcal{X}}_{1}(\mathfrak{p}^{3})$
, which is denoted by
${\mathcal{X}}_{1}(\mathfrak{p}^{3})_{k^{\text{ac}}}$
.
Lemma 7.15. The smooth projective curves
$\overline{\mathbf{Y}}_{1,2}^{\text{c}}$
and
$\overline{\mathbf{Y}}_{2,1}^{\text{c}}$
intersect with
$\overline{\mathbf{Z}}_{1,1}^{\text{c}}$
at
$P_{0}^{+}$
and
$P_{0}^{-}$
respectively in the stable reduction
${\mathcal{X}}_{1}(\mathfrak{p}^{3})_{k^{\text{ac}}}$
.
Proof. We see this from the proof of Theorem 7.14. ◻
Let
$\unicode[STIX]{x1D6E4}$
be the graph defined by the following.
-
∙ The set of the vertexes of
$\unicode[STIX]{x1D6E4}$ consists of
$P_{0}$ ,
$P_{\infty }$ ,
$P_{a}^{+}$ and
$P_{a}^{-}$ for
$a\in \mathbb{P}^{1}(k)\setminus \{0\}$ .
-
∙ The set of the edges of
$\unicode[STIX]{x1D6E4}$ consists of
$P_{0}P_{a}^{+}$ ,
$P_{0}P_{a}^{-}$ ,
$P_{\infty }P_{a}^{+}$ and
$P_{\infty }P_{a}^{-}$ for
$a\in \mathbb{P}^{1}(k)\setminus \{0\}$ .
We note that
$P_{a}^{+}$
and
$P_{a}^{-}$
for
$a\in \mathbb{P}^{1}(k)\setminus \{0\}$
are points of
$\overline{\mathbf{Y}}_{1,2}^{\text{c}}$
and
$\overline{\mathbf{Y}}_{2,1}^{\text{c}}$
that are not on
$\overline{\mathbf{Z}}_{1,1}^{\text{c}}$
by Lemma 7.15. Let
$H^{1}(\unicode[STIX]{x1D6E4},\overline{\mathbb{Q}}_{\ell })$
be the cohomology group of
$\unicode[STIX]{x1D6E4}$
with coefficients in
$\overline{\mathbb{Q}}_{\ell }$
(cf. [Reference Imai and TsushimaIT2, Section 2]). The group
$I_{K}\times {\mathcal{O}}_{D}^{\times }$
acts on
$P_{a}^{+}$
and
$P_{a}^{-}$
for
$a\in \mathbb{P}^{1}(k)\setminus \{0\}$
via the action on
$\overline{\mathbf{Y}}_{1,2}^{\text{c}}$
and
$\overline{\mathbf{Y}}_{2,1}^{\text{c}}$
. Let
$I_{K}\times {\mathcal{O}}_{D}^{\times }$
act on
$P_{0}$
and
$P_{\infty }$
trivially. By this action, we consider
$H^{1}(\unicode[STIX]{x1D6E4},\overline{\mathbb{Q}}_{\ell })$
as a
$\overline{\mathbb{Q}}_{\ell }[I_{K}\times {\mathcal{O}}_{D}^{\times }]$
-module.
Theorem 7.16. We have an exact sequence

as representations of
$(W_{K}\times D^{\times })^{0}$
. Further, as
$(I_{K}\times {\mathcal{O}}_{D}^{\times })$
-representations,
$H^{1}({\mathcal{X}}_{1}(\mathfrak{p}^{3})_{k^{\text{ac}}},\overline{\mathbb{Q}}_{\ell })$
is isomorphic to

where we put
$\unicode[STIX]{x1D6F1}_{\tilde{\unicode[STIX]{x1D712}}}=(\tilde{\unicode[STIX]{x1D712}}\circ \unicode[STIX]{x1D706})\otimes (\tilde{\unicode[STIX]{x1D712}}\circ \unicode[STIX]{x1D705}_{1}\oplus \tilde{\unicode[STIX]{x1D712}}^{q}\circ \unicode[STIX]{x1D705}_{1})$
, and
$H^{1}(\unicode[STIX]{x1D6E4},\overline{\mathbb{Q}}_{\ell })$
is isomorphic to

Proof. The existence of the exact sequence follows from [Reference Imai and TsushimaIT2, Theorem 5.3] and Lemma 7.15 using Poincaré duality (cf. [Reference FarguesFar1, Proposition 5.9.2]). We know the structure of
$H^{1}({\mathcal{X}}_{1}(\mathfrak{p}^{3})_{k^{\text{ac}}},\overline{\mathbb{Q}}_{\ell })$
by Propositions 7.3, 7.6 and 7.9.
We study the structure of
$H^{1}(\unicode[STIX]{x1D6E4},\overline{\mathbb{Q}}_{\ell })$
. By Lemma 5.1 and Lemma 6.2, the action of
$I_{K}\times {\mathcal{O}}_{D}^{\times }$
on
$H^{1}(\unicode[STIX]{x1D6E4},\overline{\mathbb{Q}}_{\ell })$
factors through
$k^{\times }$
. We can check that

as representations of
$k^{\times }$
. Hence, the claim follows from Lemmas 5.1 and 6.2.◻
Acknowledgments
The authors thank Seidai Yasuda for helpful discussion on the subject in Section 6.2.2. They are grateful to a referee for suggestions for improvements.