Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T04:26:45.019Z Has data issue: false hasContentIssue false

Some results on the variety of complexes

Published online by Cambridge University Press:  22 January 2016

Yuji Yoshino*
Affiliation:
Department of Mathematics, Nagoya University, Chikusa-ku, Nagoya 464, Japan
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let R be a (commutative) Noetherian ring, and let {n0, n1 …, nm} {k1 k2, …, km} be two sequences of integers satisfying m > 0, ki ≧ 0 (i = 1, 2, …, m) and niki ki + 1 (i = 1, 2, …, m) with k0 = km + 1 = 0.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1984

References

[ 1 ] Bourbaki, N., Algèbre Commutative, Hermann, Paris, 1965.Google Scholar
[ 2 ] Bruns, W., Die Divisorenklassengruppen der Restklassenringe von Polynomringen nach Determinantenidealen, Rev. Roumaine Math. Pures Appl., XX, No. 10 (1975), 11091111.Google Scholar
[ 3 ] DeConcini, C. and Strickland, E., On the variety of complexes, Adv. in Math., 41 (1981), 5777.Google Scholar
[ 4 ] Eisenbud, D., Introduction to algebras with straightening laws. Ring theory and algebra III, proceeding of the third Oklahoma conference, Ed. McDonald, B., Marcel Dekker, New York, 1980.Google Scholar
[ 5 ] DeConcini, C., Eisenbud, D. and Procesi, C., Hodge algebras, preprint.Google Scholar
[ 6 ] Eagon, J. and Hochster, M., Cohen-Macaulay rings, invariant theory, and the generic perfection of determinantal loci, Amer. J. Math., 43 (1971), 10201058.Google Scholar
[ 7 ] Goto, S. and Watanabe, K., On graded rings, I, J. Math. Soc. Japan, 30 (1978), 172213.Google Scholar
[ 8 ] Herzog, J. and Kunz, E., Der kanonische Modul eines Cohen-Macaulay Rings, Lecture Note in Math., 238, Springer (1971).Google Scholar
[ 9 ] Svanes, T., Coherent cohomology on Schubert subschemes of flag schemes and applications, Adv. in Math., 14 (1974), 369453.Google Scholar
[10] Watanabe, K. et al., On tensor products Gorenstein rings, J. Math. Kyoto Univ., 93 (1969), 413423.Google Scholar
[11] Stanley, R., Hilbert functions of graded algebras, Adv. in Math., 28 (1978), 5783.Google Scholar