Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-28T04:31:53.953Z Has data issue: false hasContentIssue false

A remark on the theorem of Ohsawa-Takegoshi

Published online by Cambridge University Press:  22 January 2016

Klas Diederich
Affiliation:
Mathematik, Unimersität Wuppertal, Gausstr. 20, D-42095 Wuppertal, Germany
Emmanuel Mazzilli
Affiliation:
UFR de Mathématiques Pures et Appliqués, Université de Lille, F-59655 Villeneuve d’Ascq Cedex, France
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

If D ⊂ ℂn is a pseudoconvex domain and XD a closed analytic subset, the famous theorem B of Cartan-Serre asserts, that the restriction operator r : (D) → (X) mapping each function F to its restriction F|X is surjective. A very important question of modern complex analysis is to ask what happens to this result if certain growth conditions for the holomorphic functions on D and on X are added.

Keywords

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 2000

References

[1] Diederich, K., and Mazzilli, E., Extension and restriction of holomorphic functions, Ann. Inst. Fourier, 47 (1997), 10791099.CrossRefGoogle Scholar
[2] Manivel, L., Un théorème de prolongement L 2 pour des sections holomorphes d’unfibré hermitien, Math. Z., 212 (1993), 107122.CrossRefGoogle Scholar
[3] Ohsawa, T., and Takegoshi, K., On the extension of L 2-holomorphic functions, Math. Z., 195 (1987), 197204.CrossRefGoogle Scholar