Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T17:37:54.631Z Has data issue: false hasContentIssue false

On the second Gaussian map for curves on a K3 surface

Published online by Cambridge University Press:  11 January 2016

Elisabetta Colombo
Affiliation:
Dipartimento di Matematica, Università di Milano, I-20133, Milano, Italy, [email protected]
Paola Frediani
Affiliation:
Dipartimento di Matematica, Università di Milano, I-20133, Milano, Italy, [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

By a theorem of Wahl, for canonically embedded curves which are hyperplane sections of K3 surfaces, the first Gaussian map is not surjective. In this paper we prove that if C is a general hyperplane section of high genus (> 280) of a general polarized K3 surface, then the second Gaussian map of C is surjective. The resulting bound for the genus g of a general curve with surjective second Gaussian map is decreased to g > 152.

Keywords

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 2010

References

[1] Ballico, E. and Fontanari, C., On the surjectivity of higher Gaussian maps for complete intersection curves, Ricerche Mat. 53 (2004), 7985.Google Scholar
[2] Beauville, A., Preliminaires sur les periodes des surfaces K3, Asterisque 126 (1985), 9197.Google Scholar
[3] Beauville, A. and Merindol, J.-Y., Sections hyperplanes des surfaces K3, Duke Math. J. 55 (1987), 873878.Google Scholar
[4] Ciliberto, C., Harris, J., and Miranda, R., On the surjectivity of the Wahl map, Duke Math. J. 57 (1988), 829858.CrossRefGoogle Scholar
[5] Ciliberto, C., Lopez, A. F., and Miranda, R., Projective degenerations of K3 surfaces, Gaussian maps, and Fano threefolds, Invent. Math. 114 (1993), 641667.CrossRefGoogle Scholar
[6] Ciliberto, C., Lopez, A. F., and Miranda, R., “On the corank of Gaussian maps for general embedded K3 surfaces” in Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993), Israel Math. Conf. Proc. 9, Bar-Ilan University, Ramat Gan, 1996, 141157.Google Scholar
[7] Ciliberto, C., Lopez, A. F., and Miranda, R., Classification of varieties with canonical curve section via Gaussian maps on canonical curves, Amer. J. Math. 120 (1998), 121.Google Scholar
[8] Colombo, E. and Frediani, P., Some results on the second Gaussian map for curves, Michigan Math. J. 58 (2009), 745758.Google Scholar
[9] Colombo, E. and Frediani, P., Siegel metric and curvature of the moduli space of curves, Trans. Am. Math. Soc. 362 (2010), no. 3, 12311246.CrossRefGoogle Scholar
[10] Colombo, E., Frediani, P., and Pareschi, G., Hyperplane sections of abelian surfaces, preprint, to appear in J. Algebraic Geom., arXiv:math/0903.2781Google Scholar
[11] Colombo, E., Pirola, G. P., and Tortora, A., Hodge-Gaussian maps, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 30 (2001), 125146.Google Scholar
[12] Green, M. L., “Infinitesimal methods in Hodge theory” in Algebraic Cycles and Hodge Theory, Torino 1993, Lect. Notes Math. 1594, Springer, Berlin, 1994, 192.Google Scholar
[13] Kawamata, Y., A generalization of Kodaira-Ramanujam’s vanishing theorem, Math. Ann. 261 (1982), 4346.Google Scholar
[14] Mori, S., On degrees and genera of curves on smooth quartic surfaces in P3 , Nagoya Math. J. 96 (1984), 127132.Google Scholar
[15] Morrison, D. R., On K3 surfaces with large Picard number, Invent. Math. 75 (1984), 105121.Google Scholar
[16] Saint-Donat, B., Projective models of K3 surfaces, Amer. J. Math. 96 (1974), 602639.Google Scholar
[17] Viehweg, E., Vanishing theorems, J. Reine Angew. Math. 335 (1982), 18.Google Scholar
[18] Voisin, C., Sur l’application de Wahl des courbes satisfaisant la condition de Brill-Noether-Petri, Acta Math. 168 (1992), 249272.Google Scholar
[19] Wahl, J., The Jacobian algebra of a graded Gorenstein singularity, Duke Math. J. 55 (1987), 843871.CrossRefGoogle Scholar
[20] Wahl, J., Gaussian maps on algebraic curves, J. Differential Geom. 32 (1990), 7798.Google Scholar
[21] Wahl, J., “Introduction to Gaussian maps on an algebraic curve” in Complex Projective Geometry (Trieste, 1989/Bergen, 1989), London Math. Soc. Lect. Note Ser. 179, Cambridge University Press, Cambridge, 1992, 304323.Google Scholar