Article contents
On the Ring of Integers in an Algebraic Number Field as a representation Module of Galois Group
Published online by Cambridge University Press: 22 January 2016
Extract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
1. Introduction. It is known that there are only three rationally inequivalent classes of indecomposable integral representations of a cyclic group of prime order l. The representations of these classes are:
(I) identical representation,
(II) rationally irreducible representation of degree l – 1,
(III) indecomposable representation consisting of one identical representation and one rationally irreducible representation of degree l-1 (F. E. Diederichsen [1], I. Reiner [2]).
- Type
- Research Article
- Information
- Copyright
- Copyright © Editorial Board of Nagoya Mathematical Journal 1960
References
[1]
Diederichsen, F. E., Über die Ausreduktion ganzzahliger Gruppendarstellungen bei arithrnetischer Äquivalenz, Abh, Math, Sem. Univ. Hamburg, 14 (1938).Google Scholar
[2]
Reiner, I., Integral representations of cyclic groups of prime order, Proc. Amer. Math. Soc., 8 (1957).Google Scholar
[2a]
Leopoldt, H. W., Über die Hauptordnung der ganzen Elemente eines abelschen Zahklkörpers, J. Reine Angew, Math., 201 (1959).Google Scholar
[4]
Noether, E., Normalbasis bei Körpern ohne höhere Verzweigung, J. Reine Angew. Math., 167 (1932).Google Scholar
[6]
Hasse, H., Bericht über neuere Untersuchungen und Probleme aus der Theorie der algebraischen Zahlkörper I a, Jahre. Deutsch. Math. Verein. § 9, s. 75.Google Scholar
[9]
Nakayama, T., On modules of trivial cohomology over a finite group II, Nagoya Math. J., 12 (1957).Google Scholar
[10]
Nakayama, T., Cohomology of class field theory and tensor product modules I, Ann. of Math., 65 (1957).Google Scholar
[11]
Nakayama, G. Hochschild-T., Cohomology in class field theory, Ann. of Math., 55 (1952).Google Scholar
[12]
Leopoldt, H. W., Über Einheitengruppe und Klassenzahl reeller Abelscher Zahlkörper, Abh. Deutsch. Akad. d. Wiss. zu Berlin, Math.-Naturw. Kl., Jahrg. 1953, Nr. 2 (1954).Google Scholar
[13]
Chevalley, C., L’arithmétique dans les algebres des Matrices, Actual. Sci. Ind., 323 (1936).Google Scholar
- 10
- Cited by