Article contents
On the Quadratic Extensions and the Extended Witt Ring of a Commutative Ring
Published online by Cambridge University Press: 22 January 2016
Extract
Let B be a ring and A a subring of B with the common identity element 1. If the residue A-module B/A is inversible as an A-A- bimodule, i.e. B/A ⊗A HomA(B/A, A) ≈ HomA(B/A, A) ⊗A B/A ≈ A, then B is called a quadratic extension of A. In the case where B and A are division rings, this definition coincides with in P. M. Cohn [2]. We can see easily that if B is a Galois extension of A with the Galois group G of order 2, in the sense of [3], and if is a quadratic extension of A. A generalized crossed product Δ(f, A, Φ, G) of a ring A and a group G of order 2, in [4], is also a quadratic extension of A.
- Type
- Research Article
- Information
- Copyright
- Copyright © Editorial Board of Nagoya Mathematical Journal 1973
References
- 9
- Cited by