Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-27T02:35:53.019Z Has data issue: false hasContentIssue false

On the Non-Commutativity of Pontrjagin Rings Mod 3 of Some Compact Exceptional Groups

Published online by Cambridge University Press:  22 January 2016

Shôrô Araki*
Affiliation:
The Institute for Advanced Study and Kyusyu University, Japan
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Pontrjagin rings over the field of rational numbers of compact Lie groups are commutative in the sense of graded algebras (or anti-commutative in the classical terminology) [14]. Pontrjagin rings over the field Zp (p 0) of several compact simple Lie groups were studied by Borel [5]. The most examples are commutative. However, this is generally not true.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1960

References

[1] Araki, S., On the homology of spinor groups, Mem. Fac. Sci., Kyusyu Univ., Ser. A, 9 (1955), 135.Google Scholar
[2] Araki, S., Steenrod reduced powers in the spectral sequences associated with a fibering, Mem. Fac. Sci., Kyusyu Univ., Ser. A, 11 (1957), 15-64 and 8197.Google Scholar
[3] Araki, S., A theorem on differential Hopf algebras and the cohomology mod 3 of the compact exceptional groups E7 and E8 , to appear.Google Scholar
[4] Borel, A., Sur la cohomologie des espaces fibres principaux et des espaces homogènes de groupes de Lie compacts, Ann. Math., 57 (1953), 115207.CrossRefGoogle Scholar
[5] Borel, A., Sur l’homologie et la cohomologie des groupes de Lie compacts connexes, Amer. J. Math., 76 (1954), 272342.CrossRefGoogle Scholar
[6] Borel, A., Sousgroupes commutatifs et torsion des groupes de Lie compacts, to appear.Google Scholar
[7] Borel, A. and J. de Siebenthal, Les sous-groupes fermés de rang maximum des groupes de Lie clos, Comment. Math. Helvet, 23 (1949), 200221.CrossRefGoogle Scholar
[8] Bott, R., An application of the Morse theory to the topology of Lie groups, Bull. Soc. Math. France, 84 (1956), 251281.Google Scholar
[9] Bott, R., The space of loops on a Lie group, Michigan Math. J., 5 (1958), 3561.Google Scholar
[10] Bott, R. and Samelson, H., Applications of the Morse theory to symmetric spaces, Amer. J. Math., 80 (1958), 9641029.Google Scholar
[11] Kojima, J., On the Pontrjagin product mod 2 of spinor groups, Mem. Fac. Sci., Kyusyu Univ., Ser. A, 11 (1957), 114.Google Scholar
[12] Kudo, T., A transgression theorem, Mem. Fac. Sci., Kyusyu Univ., Ser. A, 9 (1956), 7981.Google Scholar
[13] Kudo, T. and Araki, S., Topology of Hn -spaces and H-squaring operations, Mem. Fac. Sci., Kyusyu Univ., Ser. A, 10 (1956), 85120.Google Scholar
[14] Samelson, H., Beiträge zur Topologie der Gruppen-Mannigfaltigkeiten, Ann. Math., 42 (1941), 10911137.Google Scholar
[15] Serre, J.-P., Homologie singulière des espaces fibres. Applications, Ann. Math., 54 (1951), 425505.Google Scholar
[16] Siebenthal, J. de, Sur les sous-groupes fermés connexes d’un groupes de Lie clos, Comment. Math. Helvet., 25 (1951), 210256.Google Scholar
[17] Stiefel, E., Über eine Beziehung zwischen geschlossenen Lie’schen Gruppen und diskontinuierlichen Bewegungsgruppen…, Comment. Math. Helvet., 14 (1941), 350380.Google Scholar
[18] Svarc, A. S., Dokl. Akad. Nauk. SSSR (N.S.), 104 (1955), 2629.Google Scholar
[19] James, I. M. and Thomas, E., Which Lie groups are homotopy abelian?, Proc. Nat. Acad. Sci., U.S.A., 45 (1959), 734740.Google Scholar
[20] Araki, S., James, I. M. and Thomas, E., Homotopy-abelian Lie groups, Bull. Amer. Math. Soc., 66 (1960), 324326.CrossRefGoogle Scholar