Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-25T06:59:13.774Z Has data issue: false hasContentIssue false

On the Distribution of Values of Functions in the Unit Disk

Published online by Cambridge University Press:  22 January 2016

James R. Choike*
Affiliation:
Oklahoma State University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let f(z) be a function analytic and bounded, |f(z)| < 1, in |z| < 1. Then, by Fatou’s theorem the radial limit f*(e) = limr→1f(re) exists almost everywhere on |z| = 1. Seidel [8, p. 208] and Calderón, González- Domínguez, and Zygmund [1] (see also [9, pp. 281-282]) proved the following: if f*(e) is of modulus 1 almost everywhere on an arc a < θ < b of |z| = 1, then either f(z) is analytically continuable across this arc or the values f*(e), a < d < b, cover the circumference |w| = 1 infinitely many times.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1973

References

[1] Calderón, A. P. González-Domínguez, A., and Zygmund, A., Nota sobre los valores limites de funciones analiticas, Revista de la Unión Matemática Argentina, 14 (1949), pp. 1619.Google Scholar
[2] Collingwood, E. F. and Lohwater, A. J., The Theory of Cluster Sets, Cambridge University Press, New York, 1966.Google Scholar
[3] Frostman, O., Sur les produits de Blaschke, Kungl. Fysiogr. Sällsk. i Lund Förh., Bd. 12, Nr. 15 (1942), pp. 169182.Google Scholar
[4] Lohwater, A. J., The boundary values of a class of meromorphic functions, Duke Math. J. 19 (1952), pp. 243252.Google Scholar
[5] Lohwater, A. J., On the Schwarz reflection principle, Mich. Math. J. 2 (195354), ppt 151156.Google Scholar
[6] Nevanlinna, R., Analytic Functions, Springer-Verlag, New York, 1970.Google Scholar
[7] Saks, S., Theory of the Integral, 2nd Ed., Dover Publications, Inc., New York, 1964.Google Scholar
[8] Seidel, W., On the distribution of values of bounded analytic functions, Trans. Amer. Math. Soc. 36 (1934), pp. 201226.CrossRefGoogle Scholar
[9] Zygmund, A., Trigonometric Series, Vol. 1, 2nd Ed., Cambridge University Press, New York, 1959.Google Scholar