Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-25T19:07:14.727Z Has data issue: false hasContentIssue false

ON THE DEPTH OF SYMBOLIC POWERS OF EDGE IDEALS OF GRAPHS

Published online by Cambridge University Press:  28 September 2020

S. A. S. FAKHARI*
Affiliation:
School of Mathematics, Statistics and Computer Science, College of Science University of TehranTehranIran

Abstract

Assume that G is a graph with edge ideal $I(G)$ and star packing number $\alpha _2(G)$ . We denote the sth symbolic power of $I(G)$ by $I(G)^{(s)}$ . It is shown that the inequality $ \operatorname {\mathrm {depth}} S/(I(G)^{(s)})\geq \alpha _2(G)-s+1$ is true for every chordal graph G and every integer $s\geq 1$ . Moreover, it is proved that for any graph G, we have $ \operatorname {\mathrm {depth}} S/(I(G)^{(2)})\geq \alpha _2(G)-1$ .

Type
Article
Copyright
© Foundation Nagoya Mathematical Journal, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Banerjee, A., The regularity of powers of edge ideals , J. Algebraic Combin. 41 (2015), 303321.CrossRefGoogle Scholar
Bruns, W. and Herzog, J., Cohen–Macaulay Rings, Cambridge Studies in Advanced Mathematics, 39, Cambridge University Press, Cambridge, MA, 1993.Google Scholar
Burch, L., Codimension and analytic spread , Proc. Cambridge Philos. Soc. 72 (1972), 369373.CrossRefGoogle Scholar
Caviglia, G., , H. T., Herzog, J., Kummini, M., Terai, N., and Trung, N. V., Depth and regularity modulo a principal ideal , J. Algebraic Combin. 49 (2019), 120.CrossRefGoogle Scholar
Dao, H. and Schweig, J., Bounding the projective dimension of a squarefree monomial ideal via domination in clutters , Proc. Am. Math. Soc. 143 (2015), 555565.CrossRefGoogle Scholar
Fouli, L., , H. T., and Morey, S., Initially regular sequences and depths of ideals , J. Algebra 559 (2020), 3357.CrossRefGoogle Scholar
Fouli, L., , H. T., and Morey, S., Depth of powers of squarefree monomial ideals, Bahar (ed.) et al., Advances in mathematical sciences. AWM research symposium, Houston, TX, USA, April 6–7, 2019. Association for Women in Mathematics Series 21, 161–171 (2020).CrossRefGoogle Scholar
Fouli, L. and Morey, S., A lower bound for depths of powers of edge ideals , J. Algebraic Combin. 42 (2015), 829848.CrossRefGoogle Scholar
, H. T., Trung, N. V., and Trung, T. N., Depth and regularity of powers of sums of ideals , Math. Z. 282 (2016), 819838.CrossRefGoogle Scholar
Herzog, J. and Hibi, T., The depth of powers of an ideal , J. Algebra 291 (2005), no. 2, 534550.CrossRefGoogle Scholar
Herzog, J. and Hibi, T., Monomial Ideals, Springer, New York, NY, 2011.CrossRefGoogle Scholar
Hoa, L. T., Kimura, K., Terai, N., and Trung, T. N., Stability of depths of symbolic powers of Stanley-Reisner ideals , J. Algebra 473 (2017), 307323.CrossRefGoogle Scholar
Nguyen, H. D. and Trung, N. V., Depth functions of symbolic powers of homogeneous ideals , Invent. Math 218 (2019), 779827.CrossRefGoogle Scholar
Seyed Fakhari, S. A., An upper bound for the regularity of symbolic powers of edge ideals of Chordal graphs , Electron. J. Combin. 26 (2019), Research Paper P2.10.CrossRefGoogle Scholar
Seyed Fakhari, S. A., Regularity of symbolic powers of edge ideals of unicyclic graphs , J. Algebra, 541 (2020), 345358.CrossRefGoogle Scholar
Simis, A., Vasconcelos, W., and Villarreal, R. H., On the ideal theory of graphs , J. Algebra 167 (1994), 389416.CrossRefGoogle Scholar