Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-08T08:27:09.800Z Has data issue: false hasContentIssue false

On the canonical holomorphic map from the Moduli space of stable curves to the Igusa monoidal transform*)

Published online by Cambridge University Press:  22 January 2016

Yukihiko Namikawa*
Affiliation:
Nagoya University, Universität Mannheim
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let Mg be the coarse moduli space of complete non-singular curves of genus g and the coarse moduli space of principally polarized abelian varieties of dimension g. There is a canonical map:

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1973

Footnotes

*)

This article was presented to Nagoya University for the author’s doctorate.

References

[1] Artin, M.: On the solutions of analytic equations, Invent, math., Vol. 5 (1968), 277291.Google Scholar
[2] Baily, W. L. Jr.: On compactifications of orbit spaces of arithmetic discontinuous groups acting on bounded symmetric domains, Algebraic Groups and Discontinuous Groups, Proc. Symp. Pure Math., Vol. 9, A.M.S., 1966, 281295.CrossRefGoogle Scholar
[3] Clemens, C. H. et al.: Seminar on degeneration of algebraic varieties, Institute for Advanced Study, Princeton, 196970.Google Scholar
[4] Deligne, P. and Mumford, D.: The irreducibility of the space of curves of given genus, Volume Dédié au Professeur Oscar Zariski, Publ. math. I.H.E.S., No.36, Paris, 1969, 75110.Google Scholar
[5] Grauert, H.: Ein Theorem der analytischen Garbentheorie und die Modulraume komplexér Strukturen, Publ. math. I.H.E.S., No. 5, Paris, 1960.Google Scholar
[6] Grothendieck, A. and Dieudonné, J.: Éléments de géométrie algébrique, Publ. math. I.H.E.S., Paris, 1960ff.Google Scholar
[7] Hurwitz, A. and Courant, R.: Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen, 4. Auflage, Springer-Verlag, Berlin, 1964.Google Scholar
[8] Igusa, J.: A desingularization problem in the theory of Siegel modular functions, Math. Ann., Bd. 168 (1967), 228260.Google Scholar
[9] Knudsen, F. and Mumford, D.: to appear.Google Scholar
[10] Kobayashi, S. and Ochiai, T.: Satake compactification and the great Picard theorem, J. Math. Soc. Japan, Vol. 23 (1971), 340350.Google Scholar
[11] Koecher, M.: Beitráge zu einer Reduktionstheorie in Positivitátsbereichen, I., Math. Ann., Bd. 141 (1960), 384432.Google Scholar
[12] Koecher, M.: Ditto, II., Math. Ann., Bd. 144 (1961), 175182.CrossRefGoogle Scholar
[13] Nakamura, I.: On degeneration of abelian varieties, to appear.Google Scholar
[14] Namikawa, Y. and Ueno, K.: The complete classification of fibres in pencils of curves of genus two, Manuscripta math., Vol. 9 (1973), 143186.Google Scholar
[15] Namikawa, Y. and Ueno, K.: On fibres in families of curves of genus two, I, Singular fibres of elliptic type, Number Theory, Algebraic Geometry and Commutative Algebra (in honor of Yasuo Akizuki), Kinokuniya, Tokyo, 1973, 297317; II.: to appear.Google Scholar
[16] Popp, H.: On moduli of algebraic varieties, II., to appear.Google Scholar
[17] Ramis, J. P. and Ruget, G.: Complexe dualisant et théorème de dualité en géométrie analytique complexe, Publ. math. I.H.E.S., No. 38, Paris, 1970, 7791.Google Scholar
[18] Satake, I.: On Siegel’s modular functions, Proc. Internat. Symp. on Alg. Number Theory, Tokyo and Nikko, 1955, 107129.Google Scholar
[19] Satake, I.: On the compactification of the Siegel space, J. Indian Math. Soc, Vol. 20 (1956), 259281.Google Scholar
[20] Séminaire, H. Cartan: Fonctions automorphes, 10e année, 1957–58 Secrétariat math., Paris, 1958.Google Scholar
[21] Séminaire, H. Cartan: Familles d’espaces complexes et fondements de la géométrie analytique, 13e année, 1960–61, 2e ed., Secrétariat math., Paris, 1962.Google Scholar
[22] Serre, J. P.: Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier, t. 6 (195556), 142.Google Scholar
[23] Serre, J. P.: Groupes algébriques et corps de classes, Actualités scientifiques et industrielles, Hermann, Paris, 1959.Google Scholar
[24] Seshadri, C. S.: Quotient spaces modulo reductive algebraic groups, Ann. of Math., Vol. 95 (1972), 511556.CrossRefGoogle Scholar
[25] Siegel, C. L.: Symplectic geometry, Academic Press, New York, 1964; Gesammelte Abhandlungen, Springer, Berlin, 1966, Bd. 2, 274360.Google Scholar
[26] Venkov, B. A.: On the reduction of positive quadratic forms (Russian), Izvest. Acad. Nauk. USSR, Vol. 4 (1940), 3752.Google Scholar
[27] Voronoi, G.: Nouvelles applications des paramètres continus et théorie des formes quadratiques, I, II, III, J. Reine Angew. Math., Bd. 133 (1908), 97178; Bd. 134 (1908), 198287; Bd. 136 (1909), 67181.Google Scholar
[28] Weil, A.: Zum Beweis des Torellischen Satzes, Nach. Akad. Wiss. Göttingen, Bd. 2 (1957), 3353.Google Scholar
[29] Weyl, H.: Die Idee der Riemannschen Fläche, Teubner, Leipzig-Stuttgart, 1955.Google Scholar