Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-08T10:28:07.422Z Has data issue: false hasContentIssue false

On the Boundary Behavior of Conformal Maps*)

Published online by Cambridge University Press:  22 January 2016

S.E. Warschawski*
Affiliation:
University of California, San Diego, La Jolla, California, U.S.A.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Suppose Ω is a simply connected domain which is mapped conformally onto a disk. A much studied problem is the behavior of the mapping function at an accessible boundary point P of Ω, in particular the question, under what conditions the map is ‘ “conformai” at such a point (a) in the sense that angles are preserved as P is approached from Ω (“semi-conformality” at P) and (b) the dilatation at P is finite and positive. In his fundamental paper [8] in 1936, A. Ostrowski established a necessary and sufficient condition (depending on the geometry of the domain only) for the validity of the first property which subsumes all previous results and establishes a definitive solution of this problem.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1966

Footnotes

*)

The preparation of this paper was sponsored (in part) by the Office of Naval Research under contract Nonr-2216(28) (NR-043-332) with the University of California.

References

Bibliographie

[1] Ahlfors, L., Untersuchungen zur Theorie der konformen Abbildung und der ganzen Funktionen, Acta Societatis Scientiarum Fennicae, nov. série A, vol. 1, No. 9 (1930), 140.Google Scholar
[2] Dufresnoy, J. et Ferrand, J., Extension d’une inégalité de M. Ahlfors et application au problème de la dérivée angulaire, Bull, des Sciences Math., 69 (1945), 165174.Google Scholar
[3] Ferrand, J., Sur l’inégalité d’Ahlfors et son application au problème de la dérivée angulaire,Bulletin de la Société Math de France, v. 72 (1944), 178192.Google Scholar
[4] Lelong-Ferrand, J., Sur la représentation conforme des bandes, Journal d’Analyse Math. (Jerusalem) v. 2 (1952), 5171.CrossRefGoogle Scholar
[5] Lelong-Ferrand, J., Représentation conforme et transformations a intégrale de Dirichlet bornée, Gauthier-Villars, Paris, 1955.Google Scholar
[6] Gattegno, C., Nouvelle démonstration d’un théorème de M. Ostrowski sur la représentation conforme, Bull, des Sciences Math., 62 (1938), 1221.Google Scholar
[7] Gattegno, C. and Ostrowski, A., Représentation conforme à la frontière: domaines particuliers, Mémorial des Sciences Math., 110 (1949). Gauthier-Villars, Paris.Google Scholar
[8] Ostrowski, A., Zur Randverzerrung bei konformer Abbildung, Prace Mat. Fisycz. 44 (1936), 371471.Google Scholar
[9] Tsuji, M., Potential Theory in Modern Function Theory, Maruzen Co., Ltd., Tokyo, 1959.Google Scholar
[10] Warschawski, S., Über das Randverhalten der Ableitung der Abbildungsfunktion bei konformer Abbildung, Math. Zeitschrift 35 (1932), 322456.Google Scholar
[11] Wolff, J., Démonstration d’un théorème sur la conservation des angles dans la represéntation conforme au voisinage d’un point frontière, Proceedings, Kon. Akademie van Wetenschappen, Amsterdam, 38 (1935), 4650.Google Scholar
[12] Wolff, J., Sur la représentation d’un demi-plan sur un demi-plan a une infinité d’incisions circulaires, Comptes Rendus, Acad. Sc. Paris, 200 (1935), 630632.Google Scholar