Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-07T23:23:32.607Z Has data issue: false hasContentIssue false

On Real Quadratic Fields Containing Units with Norm -1

Published online by Cambridge University Press:  22 January 2016

Hideo Yokoi*
Affiliation:
Mathematical Institute, Nagoya University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let Q be the rational number field, and let K = (D > 0 a rational integer) be a real quadratic field. Then, throughout this paper, we shall understand by the fundamental unit εD of the normalized fundamental unit εD > 1.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1968

References

[1] Ankeny, N.C., Chowla, S. and Hasse, H., On the class number of the real subfield of a cyclotomic field. J. reine angew. Math. 217 (1965), 217220.CrossRefGoogle Scholar
[2] Degert, G., Über die Bestimmung der Grundeinheit gewisser reell-quadratischer Zahlkörper. Abh. math. Sem. Univ. Hamburg 22 (1958), 9297.CrossRefGoogle Scholar
[3] Hasse, H., Über mehrklassige, aber eingeschlechtige reell-quadratische Zahlkörper. Elemente der Mathematik 20 (1965), 4959.Google Scholar
[4] Nagell, T., Bemerkung über die Klassenzahl reell-quadratischer Zahlkörper. Det Kongelige Norske Videnskabens Selskab, Forhandlinger 11 (1938), 710.Google Scholar
[5] Rédei, L., Über die Pellsche Gleichung t2–du2 = –1. J. reine angew. Math. 173 (1935), 193221.CrossRefGoogle Scholar
[6] Richaud, C., Sur la résolution des équations x2 – Ay2 = ± 1. Atti Accad. pontif. Nuovi Lincei (1866), 177182.Google Scholar