Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T04:28:58.062Z Has data issue: false hasContentIssue false

On non-local problems for parabolic equations

Published online by Cambridge University Press:  22 January 2016

J. Chabrowski*
Affiliation:
University of Queensland, Department of Mathematics, St. Lucia Queensland 4067, Australia
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The main purposes of this paper are to investigate the existence and the uniqueness of a non-local problem for a linear parabolic equation

in a cylinder D = Ω × (0, T].

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1984

References

[ 1 ] Chabrowski, J., Representation theorems for parabolic systems, J. Austral. Math. Soc. Ser. A, 32 (1982), 246288.CrossRefGoogle Scholar
[ 2 ] Friedman, A., Partial differential equations of parabolic type, Prentice-Hall, Englewood Cliffs, N. J. 1964.Google Scholar
[ 3 ] Kerefov, A. A., Non-local boundary value problems for parabolic equation, Differentsial’nye Uravnenija, 15 (1979), 5255.Google Scholar
[ 4 ] Krzyzański, M., Sur les solutions de l’équation linéaire du type parabolique déterminées par les conditions initiales, Ann. Soc. Polon. Math., 18 (1945), 145156, and note complémentaire, ibid., 10 (1947), 79.Google Scholar
[ 5 ] Protter, M. H., Weinberger, H. F., Maximum principles in differential equations, Prentice-Hall, Englewood Cliffs, N. J. 1967.Google Scholar
[ 6 ] Vabishchevich, P. N., Non-local parabolic problems and the inverse heat-conduction problem, DifferentsiaPnye Uravnenija, 17 (1981), 761765.Google Scholar
[ 7 ] Watson, N. A., Uniqueness and representation theorems for parabolic equations, J. London Math. Soc. (2), 8 (1974), 311321.CrossRefGoogle Scholar