Published online by Cambridge University Press: 22 January 2016
One dimensional diffusion processes have been increasingly invoked to model a variety of biological, physical and engineering systems subject to random fluctuations (cf., for instance, Blake, I. F. and Lindsey, W. C. [2], Abrahams, J. [1], Giorno, V. et al [10] and references therein). However, usually the knowledge of the ‘free’ transition probability density function (pdf) is not sufficient; one is thus led to the more complicated task of determining transition functions in the presence of preassigned absorbing boundaries, or first-passage-time densities for time-dependent boundaries (see, for instance, Daniels, H. E. [6], [7], Giorno, V. et al. [10]). Such densities are known analytically only in some special instances so that numerical methods have to be implemented in general (cf., for instance, Buono-core, A. et al [3], [4], Giorno, V. et al [11]). The analytical approach becomes particularly effective when the diffusion process exhibits some special features, such as the symmetry of its transition pdf. For instance, in [10] special symmetry conditions on the transition pdf of one-dimensional time-homogeneous diffusion process with natural boundaries are investigated to derive closed form results concerning the transition pdf’s and the first-passage-time pdf for particular time-dependent boundaries. On the other hand, by using the method of images, in [6] Daniels has obtained a closed form expression for the transition pdf of the standard Wiener process in the presence of a particular time-dependent absorbing boundary. It is interesting to remark that such density cannot be obtained via the methods described in [10], even though the considered process exhibits the kind of symmetry discussed therein.