No CrossRef data available.
Article contents
On a product related to the cubic Gauss sum, II
Published online by Cambridge University Press: 22 January 2016
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
We continue the investigation of the product whose argument has been shown, in [2], to be related to the cubic Gauss sum.
- Type
- Research Article
- Information
- Copyright
- Copyright © Editorial Board of Nagoya Mathematical Journal 1997
References
[1]
Cauchy, A., Méthode simple et nouvelle pour la détermination complète des sommes alternées, formées avec les racines primitives des équations binomes, J. de Math., 5 (1840), 154–168.Google Scholar
[2]
Ito, H., On a product related to the cubic Gauss sum, J. reine angew. Math., 395 (1989), 202–213.Google Scholar
[3]
Loxton, J. H., Products related to Gauss sums, J. reine angew. Math., 268/269 (1974), 53–67.Google Scholar
[4]
Matthews, C. R., Gauss sums and elliptic functions: I. The Kummer sums, Invent. Math., 52 (1979), 163–185.Google Scholar
[5]
McGettric, A. D., A result in the theory of Weierstrass elliptic functions, Proc. London Math. Soc. (3), 25 (1972), 41–54.Google Scholar
[6]
Reshetukha, I. V., A product related to the cubic Gauss sum, Ukrain. Math. J., 37 (1985), 611–616.Google Scholar
[7]
Takagi, T., Product formula of the cubic Gauss sum modulo the product of the primes, J. Number Theory, 62 (1997), 298–306.Google Scholar