No CrossRef data available.
Article contents
Numerical criteria for certain fiber spaces to be birationally trivial
Published online by Cambridge University Press: 22 January 2016
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Let f: X → B be a fiber space over a curve B whose general fiber F belongs to one of the following type: 1) F is of general type and satisfying some mild conditions, 2) F is with trivial canonical sheaf. In this note, a numerical characterization for f: X → B to be birationally trivial is given.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Editorial Board of Nagoya Mathematical Journal 2002
References
[1]
Beauville, A., L’application canonique pour les surfaces de type général, Invent. Math., 55 (1979), 121–140.CrossRefGoogle Scholar
[2]
Beauville, A., L’inegalite pg ≥ 2q - 4 pour les surfaces de type général, Appendice à O. Debarre: “Inégalités numériques pour les surfaces de type général”, Bull. Soc. Math. France, 110 (1982), 343–346.Google Scholar
[3]
Barth, W., Peters, C. and Ven, A. Van de, Compact complex surfaces, Ergeb. Math. Grenzgeb., 1984.CrossRefGoogle Scholar
[4]
Bogomolov, F., Holomorphic tensors and vector bundles on projective varieties, Math. USSR, Izv. 13 (1979), 499–555.CrossRefGoogle Scholar
[5]
Fujita, T., On Kaehler fibre spaces over curves, J. Math. Soc. Japan, 30 (1978), 779–794.CrossRefGoogle Scholar
[6]
Kollár, J., Subadditivity of the Kodaira dimension: fibers of general type, Alg. Geom. Sendai, 1985, Adv. Studies Pure Math., 10 (1987), 361–398.Google Scholar
[7]
Levine, M., Deformation of irregular threefolds, Lect. Notes in Math. 947, Springer (1982), pp. 269–286.Google Scholar
[8]
Luo, T., Global 2-forms on regular 3-folds of general type, Duke Math. Jour., 71 (1993), 859–869.CrossRefGoogle Scholar
[9]
Mabuchi, T., Invariant β and uniruled threefolds, J. Math. Kyoto Univ., 22 (1982), 503–554.Google Scholar
[10]
Mori, S., Classification of higher-dimensional varieties, Proceedings of Symposia in Pure Math., 46 (1987), 269–331.CrossRefGoogle Scholar
You have
Access