Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-04T18:38:40.400Z Has data issue: false hasContentIssue false

A note on local densities of quadratic forms

Published online by Cambridge University Press:  22 January 2016

Yoshiyuki Kitaoka*
Affiliation:
Department of Mathematics, Faculty of Science, Nagoya University, Chikusa-ku, Nagoya 464, Japan
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let L, M be regular quadratic lattices over Zp. The local density αp(L, M) is an important invariant in the theory of representation of quadratic forms and they appear naturally in Fourier coefficients of Eisenstein series. In spite of the importance we knew little except the case when either L = M or rk L = 1 and M is unimodular. Evaluating them is a laborious task.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1983

References

[1] Kitaoka, Y., Modular forms of degree n and representation by quadratic forms II, Nagoya Math. J., 87 (1982), 127146.CrossRefGoogle Scholar
[2] Maass, H., Die Fourier koeffizienten der Eisensteinreihen zweiten Grades, Mat.-Fys. Medd. Danske Vid. Selsk., 34, Nr. 7 (1964).Google Scholar
[3] Maass, H., Über die Fourier koeffizienten der Eisensteinreihen zweiten Grades, ibid. 38, Nr. 14 (1972).Google Scholar
[4] Ozeki, M., On the evaluation of certain generalized Gauss sums in non-dyadic case, preprint, (1981).Google Scholar
[5] Ozeki, M., On certain generalized Gaussian sums, Proc. Japan Acad., 58 (1982), 223226.Google Scholar
[6] Resnikoff, H. L., Saldaña, R. L., Some properties of Fourier coefficients of Eisenstein series of degree two, J. reine angew. Math., 265 (1974), 90109.Google Scholar
[7] Siegel, C. L., Über die analytische Theorie der quadratischen Formen, Ann. of Math., 36 (1935), 527606.CrossRefGoogle Scholar
[8] Siegel, C. L., Einführung in die Theorie der Modulfunktionen n-ten Grades, Math. Ann., 116 (1939), 617657.CrossRefGoogle Scholar
[9] Siegel, C. L., Über die Fourierschen Koeffizienten der Eisensteinschen Reihen, Mat.-Fys. Medd. Danske Vid. Selsk. 34, Nr. 6 (1964).Google Scholar
[10] Tamagawa, T., On the ζ-functions of a division algebra, Ann. of Math., 77 (1963), 387405.CrossRefGoogle Scholar