Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-30T15:18:24.319Z Has data issue: false hasContentIssue false

Maximum Principles in the Potential Theory

Published online by Cambridge University Press:  22 January 2016

Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Ninomiya, in his thesis [13] on the potential theory with respect to a positive symmetric continuous kernel G on a locally compact Hausdorff space Ω, proves that G satisfies the balayage (resp. equilibrium) principle if and only if G satisfies the domination (resp. maximum) principle. He starts from the Gauss-Ninomiya variation and shows that for any given compact set K in Ω and any positive upper semi-continuous function u on K, there exists a positive measure μ on K such that its potential is ≥ u on the support of μ and Gμ≥u on K almost everywhere with respect to any positive measure with finite energy.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1963

References

[1] Alexandroff, P. and Hopf, H.: Topologie I, Berlin, 1935.Google Scholar
[2] Brelot, M. and Choquet, G.: Le théorème de convergence en théorie du potentiel, Jour. Madras Univ., B. 27 (1957), 277286.Google Scholar
[3] Car, H. tan and Deny, J.: Le principe du maximum en théorie du potentiel et la notion de fonction surharmonique, Acta Sci. Math. Szeged, 12 (1950), 81100.Google Scholar
[4] Choquet, G. and Deny, J.: Modèles finis en théorie du potentiel, Jour. Anal. Math., 5 (195657), 77135.Google Scholar
[5] Deny, J.: Les deux aspects de la théorie du potentiel, Sém. Bourbaki, (1957), no. 148, 18 pp.Google Scholar
[6] Deny, J.: Les principes du maximum en théorie du potentiel, Sém. Brelot-Choquet-Deny, 6e année (1962), no. 10, 8 pp.Google Scholar
[7] Frostman, O.: Potentiel d’équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions, Thèse, Lund, (1935), 118 pp.Google Scholar
[8] Hunt, G. A.: Markoff processes and potentials II, Illinois Jour. Math., 1 (1957), 316369.Google Scholar
[9] Kametani, S.: Positive definite integral quadratic forms and generalized potentials, Proc. Imp. Acad. Japan, 20 (1944), 714.Google Scholar
[10] Kishi, M.: Unicity principles in the potential theory, Osaka Math. Jour., 13 (1961), 4174.Google Scholar
[11] Kishi, M.: Note on balayage and maximum principles, Proc. Japan Acad., 39 (1963), 415418.Google Scholar
[12] Ninomiya, N.: Sur le théorème du balayage et le théorème d’équilibre, Jour. Inst. Polytech. Osaka City Univ., 6 (1955), 8391.Google Scholar
[13] Ninomiya, N.: Etude sur la théorie du potentiel pris par rapport au noyau symétrique, ibid. 8 (1957), 147179.Google Scholar
[14] Ninomiya, N.: Sur le problème du balayage généralisé, Jour. Math. Osaka City Univ., 12 (1961), 115138.Google Scholar
[15] Ninomiya, N.: Sur un principe du maximum dans la théorie du potentiel, ibid. 12 (1961), 139143.Google Scholar
[16] Ohtsuka, M.: On potentials in locally compact spaces, Jour. Sci. Hiroshima Univ Ser. A-I, 25 (1961), 135352.Google Scholar