Article contents
Logarithmic Vector Fields and Hyperbolicity
Published online by Cambridge University Press: 11 January 2016
Abstract
Using vector fields on logarithmic jet spaces we obtain some new positive results for the logarithmic Kobayashi conjecture about the hyperbolicity of complements of curves in the complex projective plane. We are interested here in the cases where logarithmic irregularity is strictly smaller than the dimension. In this setting, we study the case of a very generic curve with two components of degrees d1 ≤ d2 and prove the hyperbolicity of the complement if the degrees satisfy either d1 ≥ 4, or d1 = 3 and d2 ≥ 5, or d1 = 2 and d2 ≥ 8, or d1 = 1 and d2 ≥ 11. We also prove that the complement of a very generic curve of degree d at least equal to 14 in the complex projective plane is hyperbolic, improving slightly, with a new proof, the former bound obtained by El Goul.
- Type
- Research Article
- Information
- Copyright
- Copyright © Editorial Board of Nagoya Mathematical Journal 2009
References
- 6
- Cited by