Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-03T08:56:53.102Z Has data issue: false hasContentIssue false

Integrable derivations

Published online by Cambridge University Press:  22 January 2016

Hideyuki Matsumura*
Affiliation:
Department of Mathematics, Nagoya University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let A be a commutative ring and D be a derivation of A into itself. If there exists a homomorphism E: AA[[t]] such that

then we say that D is integrable. Integrable derivations have many good properties. In fact, most of unpleasant phenomena of derivations in characteristic p disappear if we consider integrable derivations only.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1982

References

[1] André, M., Homologie des algebres commutatives, Springer, 1974.Google Scholar
[2] André, M., Méthodes simpliciale en Algèbre Homologique et Algèbre Commutative, Springer Lecture Notes in Math., 32 (1967).Google Scholar
[3] Avramov, L. L., Flat morphisms of complete intersections, Soviet Math. Dokl., 16 (1975), 14131417.Google Scholar
[4] Brown, W. C., On the imbedding of derivations of finite rank into derivations of infinite rank, Osaka J. Math., 15 (1978), 381389.Google Scholar
[5] Grothendieck, A., Éléments de Géométrie Algébrique, IV-1, Publ. I.H.E.S., no. 20, 1964.Google Scholar
[6] Grothendieck, A., ibid., IV-2, Publ. I.H.E.S., no. 24, 1965.Google Scholar
[7] Hasse, H. and Schmidt, F. K., Noch eine Begründung der Theorie der höheren Differentialquotienten in einem algebraischen Funktionenkorper einer Unbestimmten, J. reine u. angew. Math., 117 (1937).Google Scholar
[8] Lipman, J., Free derivation modules on algebraic varieties, Amer. J. Math., 87 (1965), 874898.Google Scholar
[9] Lipman, J., On the Jacobian ideal of the module of differentials, Proc. Amer. Math. Soc., 21 (1969), 422426.Google Scholar
[10] Matsumura, H., Quasi-coefficient rings of a local ring, Nagoya Math. J., 68 (1977), 123130.Google Scholar
[11] Matsumura, H., Commutative Algebra, 2nd Ed. Benjamin, 1980.Google Scholar
[12] Molinelli, S., Sul modulo delle derivazioni integrabili in caratteristica positiva, Ann. Mat. Pura Appl., 121 (1979), 2538.Google Scholar
[13] Nakai, Y., High order derivations I, Osaka J. Math., 7 (1970), 127.Google Scholar
[14] Nakai, Y., On locally finite iterative higher derivations, ibid., 15 (1978), 655662.Google Scholar
[15] Northcott, D. G., Finite Free Resolutions, Camb. Tracts in Math., 71, Camb. Univ. Press, 1976.Google Scholar
[16] Restuccia, G., Sul rango del modulo delle derivazioni di un anello in caratteristica diseguale, Rend. Sem. Mat. Univ. Politecn. Torino, 36 (1977-78), 449462.Google Scholar
[17] Scheja-Storch, , Differentielle Eigenschaften der Lokalisierungen analytiseher Algebren, Math. Ann., 197 (1972), 137170.Google Scholar
[18] Seidenberg, A., Derivations and integral closure, Pacific J. Math., 16 (1966), 167173.Google Scholar
[19] Seidenberg, A., Differential ideals in rings of finitely generated type, Amer. J. Math., 89 (1967), 2242.CrossRefGoogle Scholar
[20] Seidenberg, A., Differential ideals in complete local rings, ibid., 95 (1973), 5258.Google Scholar
[21] Watanabe, K., Ishikawa, T., Tachibana, S. and Otsuka, K., On tensor products of Gorenstein rings, J. Math. Kyoto Univ., 9 (1969), 413423.Google Scholar
[22] Yamauchi, N., On an algebra over a field with universal finite module of differentials, Nagoya Math. J., 83 (1981), 107121.CrossRefGoogle Scholar
[AG] Hartshorne, R., Algebraic Geometry, Springer, 1977.Google Scholar