Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-30T15:08:51.759Z Has data issue: false hasContentIssue false

Homogeneous vector bundles and stability

Published online by Cambridge University Press:  22 January 2016

Shoshichi Kobayashi*
Affiliation:
Department of Mathematics University of California, Berkeley Berkeley, California 94720, U.S.A.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In [5, 6, 7] I introduced the concept of Einstein-Hermitian vector bundle. Let E be a holomorphic vector bundle of rank r over a complex manifold M. An Hermitian structure h in E can be expressed, in terms of a local holomorphic frame field s1, …, sr of E, by a positive-definite Hermitian matrix function (hij) defined by

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1986

References

[ 1 ] Boothby, W. M., Homogeneous complex contact manifolds, Proc. Symp. Pure Math., 3 (1961), Amer. Math. Soc. 144154.Google Scholar
[ 2 ] Boothby, W. M., A note on homogeneous complex contact manifolds, Proc. Amer. Math. Soc, 13 (1962), 276280.CrossRefGoogle Scholar
[ 3 ] Borei, A., Kählerian coset spaces of semi-simple Lie groups, Proc. Nat. Acad. Sci. USA, 40 (1954), 11471151.Google Scholar
[ 4 ] Kobayashi, S., Remarks on complex contact manifolds, Proc. Amer. Math. Soc, 10 (1959), 164167.Google Scholar
[ 5 ] Kobayashi, S., First Chern class and holomorphic tensor fields, Nagoya Math. J., 77 (1980), 511.CrossRefGoogle Scholar
[6] Kobayashi, S., Curvature and stability of vector bundles, Proc. Japan Acad., 58 (1982), 158162.Google Scholar
[ 7 ] Kobayashi, S., Differential Geometry of Holomorphic Vector Bundles, Mathematics Seminar Notes, 41 (1982), University of Tokyo. (In Japanese).Google Scholar
[ 8 ] Lübke, M., Hermite-Einstein-Vektorbündel, Dissertation, Bayreuth, 1982.Google Scholar
[ 9 ] Lübke, M., Stability of Einstein-Hermitian vector bundles, Manuscripta Math., 42 (1983), 245257.Google Scholar
[ 10 ] Okonek, C., Schneider, M. and Spindler, H., Vector Bundles on Complex Projective Spaces, Progress in Math., 3 (1980), Birkhäuser.Google Scholar
[ 11 ] Ramanan, S., Holomorphic vector bundles on homogeneous spaces, Topology, 5 (1966), 159177.CrossRefGoogle Scholar
[ 12 ] Salamon, S. M., Quaternionic manifolds, Symposia Math., 26 (Convegno del Maggio 1981), 1982, 1st. Naz. Alta Mat. F. Severi, 139151, Academic Press.Google Scholar
[13] Umemura, H., On a theorem of Ramanan, Nagoya Math. J., 69 (1978), 131138.Google Scholar
[14] Wang, H. C., Closed manifolds with homogeneous complex structure, Amer. J. Math., 76 (1954), 132.Google Scholar
[15] Wolf, J. A., Complex homogeneous contact manifolds and quaterninonic symmetric, J. spaces, Math. Mech., 14 (1965), 10331048.Google Scholar