Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-03T09:07:36.894Z Has data issue: false hasContentIssue false

Higher Extensions of Abelian Varieties

Published online by Cambridge University Press:  22 January 2016

Frans Oort
Affiliation:
University of Amsterdam and Harvard University
Tadao Oda
Affiliation:
Nagoya University and Harvard University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we prove:

THEOREM: Let k be an algebraically closed field of characteristic p > 0, and let X and Y be abelian varieties over k. Then the group Ext2(X, Y) = 0.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1968

References

[1] Barsotti, I., Abelian varieties over fields of positive characteristic. Rend. Circ. Palermo, Ser. II, 5 (1956), 125.Google Scholar
[2] Deuring, M., Die Typen der Multiplikatorenringe ellitischer Funktionenekörper. Abh. Math. Sem. Hamburg Univ. 14 (1941), 197272.CrossRefGoogle Scholar
[3] Gabriel, P., Sur les catégorie abéliennes localement noethériens et leurs applications aux algèbres étudiées par Dieudonné. Sem. J.-P. Serre, 1960.Google Scholar
[4] Manin, Yu. I., The theory of commutative formal groups over fields of finite characteristic. Russian Math. Surveys, 18 (1963), l80(=Uspehi mat. Nauk 18 (1963), 390). CGS Oort, F., Commutative group schemes. Lecture N. Math. 15, Springer Verlag, 1966.Google Scholar
[5] Russell, K.P., The theory of commutative algebraic groups. Thesis, University of Calif., Berkeley, 1966.Google Scholar
[6] Serre, J.-P., Groupes proalgébriques. Publ. Math. 7, IHES, 1960.Google Scholar
[7] Serre, J.-P., Corps locaux. Act. sc. ind. 1296, Hermann Paris, 1962.Google Scholar