Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-02T23:53:24.475Z Has data issue: false hasContentIssue false

Glauber dynamics for fermion point processes

Published online by Cambridge University Press:  22 January 2016

Tomoyuki Shirai
Affiliation:
Department of Mathematics, Tokyo Institute of Technology, Oh-okayama, Meguro-ku, Tokyo, 152-8551, Japan
Hyun Jae Yoo
Affiliation:
Department of Mathematics, Tokyo Institute of Technology, Oh-okayama, Meguro-ku, Tokyo, 152-8551, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We construct a Glauber dynamics on {0, 1}, ℛ a discrete space, with infinite range flip rates, for which a fermion point process is reversible. We also discuss the ergodicity of the corresponding Markov process and the log-Sobolev inequality.

Keywords

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 2002

References

[1] Aizenman, M. and Holley, R., Rapid convergence to equilibrium of stochastic Ising models in the Dobrushin Sholosman regime, Percolation theory and ergodic theory of infinite particle systems (Kesten, H., ed.), IMS Volume in Math. and Appl. 8, Springer, Berlin-Heidelberg-New York (1987), pp. 111.Google Scholar
[2] Araki, H. and Matsui, T., Ground states of the XY-model, Commun. Math. Phys., 101 (1985), 213245.CrossRefGoogle Scholar
[3] Borodin, A., Okounkov, A. and Olshanski, G., Asymptotics of Plancherel measures for symmetric groups, J. Amer. Math. Soc., 13 (2000), no. 3, 481515.CrossRefGoogle Scholar
[4] Borodin, A. and Olshanski, G., Point processes and the infinite symmetric group part III: fermion point processes, math. RT/9804088 (1998).Google Scholar
[5] Deuschel, D. J., and Stroock, D. W., Large deviations, Academic Press, Boston, 1989.Google Scholar
[6] Georgii, H.-O., Gibbs Measures and Phase Transitions, de Gruyter Studies in Mathematics 9, Walter de Gruyter, Berlin-New York, 1988.CrossRefGoogle Scholar
[7] Gross, L., Logarithmic Sobolev inequalities, Amer. J. Math., 97 (1976), 10611083.CrossRefGoogle Scholar
[8] Guionnet, A. and Zegarlinski, B., Lectures on logarithmic Sobolev inequalities, preprint (2000).Google Scholar
[9] Föllmer, H., A covariance estimate for Gibbs measures, J. Funct. Anal., 46 (1982), 387395.CrossRefGoogle Scholar
[10] Fukushima, M., Oshima, Y. and Takeda, M., Dirichlet Forms and Symmetric Markov Processes, Walter de Gruyter, Berlin-New York, 1994.CrossRefGoogle Scholar
[11] Kato, T., Perturbation theory for linear operators, Springer-Verlag, Berlin-Heidelberg-New York, 1966.Google Scholar
[12] Laroche, E., Hypercontractivité pour des systemes de spins de porté e infinie, Prob. Th. Rel. Fields, 101 (1995), 89132.CrossRefGoogle Scholar
[13] Liggett, M. T., Interacting Particle Systems, Springer-Verlag, New York, 1985.CrossRefGoogle Scholar
[14] Lu, L. S., and Yau, H. T., Spectral gap and logarithmic Sobolev inequality for Kawasaki and Glauber dynamics, Commun. Math. Phys., 156 (1993), 399433.CrossRefGoogle Scholar
[15] Macchi, O., The coincidence approach to stochastic point processes, Adv. Appl. Prob., 7 (1975), 83122.CrossRefGoogle Scholar
[16] Macchi, O., The fermion process – a model of stochastic point process with repulsive points, Transactions of the Seventh Prague Conference on Information Theory, Statistical Decision Functions, Random Processes and of the Eighth European Meeting of Statisticians (Tech. Univ. Prague, Prague, 1974), Vol. A (1977), pp. 391398.Google Scholar
[17] Matsui, T., Explicit formulas for correlation functions of ground states of the 1 dimensional XY-model, Ann. Inst. Henri Poincaré, 45 (1) (1986), 4959.Google Scholar
[18] Martinelli, F., Lectures on Glauber dynamics for discrete spin models, Lecture Note in Math. 1717 (1997), 93191.CrossRefGoogle Scholar
[19] Ma, M. Z., and Röckner, M., Introduction to the Theory of (non-symmetric) Dirichlet forms, Springer-Verlag, Berlin-Heidelberg-New York, 1992.CrossRefGoogle Scholar
[20] Osada, H., Dirichlet form approach to infinite-dimensional Wiener processes with singular interactions, Commun. Math. Phys., 176 (1996), 117131.CrossRefGoogle Scholar
[21] Shirai, T. and Takahashi, Y., Random point fields associated with certain Fredholm determinants I: Fermion, Poisson and Boson point processes, preprint RIMS-1368 available via http://www.kurims.kyoto-u.ac.jp/∼kenkyubu/paper/all.html.Google Scholar
[22] Shirai, T. and Takahashi, Y., Random point fields associated with certain Fredholm determinants II: Fermion shifts and their ergodic and Gibbs properties, to appear in Annals. of prob.Google Scholar
[23] Simon, B., A remark on Nelson’s best hypercontractive estimates, Proc. Amer. Math. Soc., 55 (1975), 376378.Google Scholar
[24] Soshnikov, A., Determinantal random point fields, Russian Math. Surveys, 55 (2000), 923975.CrossRefGoogle Scholar
[25] Spohn, H., Interacting Brownian Particles: A Study of Dyson’s Model, Hydrodynamic Behavior and Interacting Particle Systems (G. Papanicalaou, ed.), IMA Vol. Math. Appl. 9, Springer, New York (1987), pp. 151179.Google Scholar
[26] Stroock, W. D., and Zegarlinski, B., The logarithmic Sobolev inequality for discrete spin systems on a lattice, Commun. Math. Phys., 149 (1992), 175193.CrossRefGoogle Scholar
[27] Stroock, W. D., and Zegarlinski, B., The equivalence of the logarithmic Sobolev inequality and Dobrushin-Shlosman mixing condition, Commun. Math. Phys., 144 (1992), 303323.CrossRefGoogle Scholar