Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T22:33:04.847Z Has data issue: false hasContentIssue false

Generators for modules of vector-valued Picard modular forms

Published online by Cambridge University Press:  11 January 2016

Fabien Cléry
Affiliation:
Korteweg-de Vries Instituut, Universiteit van Amsterdam, Postbus 94248, 1090 GE Amsterdam, The Netherlands, [email protected]
Gerard Van Der Geer
Affiliation:
Korteweg-de Vries Instituut, Universiteit van Amsterdam, Postbus 94248, 1090 GE Amsterdam, The Netherlands, [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We construct generators for modules of vector-valued Picard modular forms on a unitary group of type (2, 1) over the Eisenstein integers. We also calculate eigenvalues of Hecke operators acting on cusp forms.

Keywords

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 2013

References

[1] Bergström, J., Faber, C., and Geer, G. van der, Siegel modular forms of degree three and the cohomology of local systems, Selecta Math. (N.S.), published electronically 12 March 2013. DOI 10.1007/s00029-013-0118-6.Google Scholar
[2] Bergström, J. and Geer, G. van der, Cohomology of local systems and Picard modular forms, in preparation.Google Scholar
[3] Faber, C. and Geer, G. van der, Sur la cohomologie des syst`emes locaux sur les espaces de modules des courbes de genre 2 et des surfaces abéliennes, I, C. R. Math. Acad. Sci. Paris 338 (2004), 381384; II, 467470. MR 2057161. DOI 10.1016/j.crma.2003. 12.026; MR 2057727. DOI 10.1016/j.crma.2003.12.025.CrossRefGoogle Scholar
[4] Feustel, J.-M., Ringe automorpher Formen auf der komplexen Einheitskugel und ihre Erzeugung durch Theta-Konstanten, Preprint Ser. Akad. Wiss. DDR P-MATH-13, Karl-Weierstrass-Institut für Mathematik, Berlin, 1986.Google Scholar
[5] Finis, T., Some computational results on Hecke eigenvalues of modular forms on a unitary group, Manuscripta Math. 96 (1998), 149180. MR 1624517. DOI 10.1007/s002290050059.CrossRefGoogle Scholar
[6] Holzapfel, R.-P., Geometry and Arithmetic: Around Euler Partial Differential Equations, Math. Monogr. 20, VEB Deutscher, Berlin, 1986. MR 0849778.Google Scholar
[7] Holzapfel, R.-P., The Ball and Some Hilbert Problems, with appendix I by J. Estrada Sarlabous, Lectures Math. ETH Zürich, Birkhäuser, Basel, 1995. MR 1350073. DOI 10.1007/978-3-0348-9051-9.Google Scholar
[8] Kaneko, M. and Zagier, D., “A generalized Jacobi theta function and quasimodular forms” in The Moduli Space of Curves (Texel Island, 1994), Progr. Math. 129, Birkhäuser, Boston, 1995, 165172. MR 1363056.CrossRefGoogle Scholar
[9] Kudla, S. S., On certain arithmetic automorphic forms for SU(1,q), Invent. Math. 52 (1979), 125. MR 0532744. DOI 10.1007/BF01389855.CrossRefGoogle Scholar
[10] Kudla, S. S., On certain Euler products for SU(2, 1), Compos. Math. 42 (1980/81), 321344. MR 0607374.Google Scholar
[11] Langlands, R. P. and Ramakrishnan, D., The Zeta Functions of Picard Modular Surfaces, Université de Montréal, Centre de Recherches Mathématiques, Montréal, 1992, 255301. MR 1155223.Google Scholar
[12] Resnikoff, H. L. and Tai, Y.-S., On the structure of a graded ring of automorphic forms on the 2-dimensional complex ball, Math. Ann. 238 (1978), 97117. MR 0512815. DOI 10.1007/BF01424767.CrossRefGoogle Scholar
[13] Resnikoff, H. L. and Tai, Y.-S., On the structure of a graded ring of automorphic forms on the 2-dimensional complex ball, II, Math. Ann. 258 (1981/82), 367382. MR 0650943. DOI 10.1007/ BF01453972.Google Scholar
[14] Rogawski, J. D., Automorphic Representations of Unitary Groups in Three Variables, Ann. of Math. Stud. 123, Princeton University Press, Princeton, 1990. MR 1081540.Google Scholar
[15] Shiga, H., On the representation of the Picard modular function by θ constants, I, II, Publ. Res. Inst. Math. Sci. 24 (1988), 311360. MR 0966178. DOI 10.2977/prims/ 1195175031.CrossRefGoogle Scholar
[16] Shimura, G., On purely transcendental fields of automorphic functions of several variables, Osaka J. Math. 1 (1964), 114. MR 0176113.Google Scholar
[17] Shimura, G., The arithmetic of automorphic forms with respect to a unitary group, Ann. of Math. (2) 107 (1978), 569605. MR 0563087.CrossRefGoogle Scholar
[18] Shintani, T., On automorphic forms on unitary groups of order 3, unpublished manuscript.Google Scholar
[19] Zink, T., Uber die Anzahl der Spitzen einiger arithmetischer Untergruppen unitärer Gruppen, Math. Nachr. 89 (1979), 315320. MR 0546890. DOI 10.1002/mana.19790890125.CrossRefGoogle Scholar