Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-06T05:03:00.506Z Has data issue: false hasContentIssue false

EFFECTIVE CYCLES ON SOME LINEAR BLOWUPS OF PROJECTIVE SPACES

Published online by Cambridge University Press:  05 December 2019

NORBERT PINTYE
Affiliation:
Department of Mathematical Sciences, Loughborough University, LE11 3TU, United Kingdom email [email protected]
ARTIE PRENDERGAST-SMITH
Affiliation:
Department of Mathematical Sciences, Loughborough University, LE11 3TU, United Kingdom email [email protected]

Abstract

We compute cones of effective cycles on some blowups of projective spaces in general sets of lines.

Type
Article
Copyright
© 2019 Foundation Nagoya Mathematical Journal

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Coskun, I., Lesieutre, J. and Ottem, J. C., Effective cones of cycles on blowups of projective spaces, Algebra Number Theory 10(9) (2016), 19832014.CrossRefGoogle Scholar
Debarre, O., Ein, L., Lazarsfeld, R. and Voisin, C., Pseudoeffective and nef classes on abelian varieties, Compos. Math. 147(6) (2011), 17931818.CrossRefGoogle Scholar
Dumitrescu, O., Postinghel, E. and Urbinati, S., Cones of effective divisors on the blown-up P3 in general lines, Rend. Circ. Mat. Palermo (2) 66(2) (2017), 205216.CrossRefGoogle Scholar
Eisenbud, D. and Harris, J., 3264 And All That, Cambridge University Press, Cambridge, 2016.CrossRefGoogle Scholar
Fulger, M. and Lehmann, B., Zariski decompositions of numerical cycle classes, J. Algebraic Geom. 26(1) (2017), 43106.10.1090/jag/677CrossRefGoogle Scholar
Fulger, M. and Lehmann, B., Positive cones of dual cycle classes, Algebraic Geom. 4(1) (2017), 128.10.14231/AG-2017-001CrossRefGoogle Scholar
Fulton, W., Intersection Theory, 2nd ed. Springer, 1998.CrossRefGoogle Scholar
Grothendieck, A., Éléments de géomtrie algébique. IV. Étude locale des schémas et de morphismes des schémas. III, Publ. Math. Inst. Hautes Études Sci. 28 (1966), Available at http://www.numdam.org/item/PMIHES_1966__28__5_0.Google Scholar
Kleiman, S., The transversality of a general translate, Compos. Math. 28(3) (1974), 287297.Google Scholar
Li, Q., Pseudo-effective and nef cones on spherical varieties, Math. Z. 280(3–4) (2015), 945979.10.1007/s00209-015-1457-0CrossRefGoogle Scholar
Macaulay2 computations. Ancillary files available athttps://arxiv.org/abs/1812.08476.Google Scholar
Bruns, W., Ichim, B., Römer, T., Sieg, R. and Söger, C., Normaliz. Algorithms for rational cones and affine monoids. Available at https://www.normaliz.uni-osnabrueck.de.Google Scholar
Ottem, J. C., Ample subvarieties and q-ample divisors, Adv. Math. 229(5) 28682887.10.1016/j.aim.2012.02.001CrossRefGoogle Scholar
Supplementary material: File

Pintye and Prendergast-Smith supplementary material

Pintye and Prendergast-Smith supplementary material

Download Pintye and Prendergast-Smith supplementary material(File)
File 6.9 KB