Hostname: page-component-f554764f5-sl7kg Total loading time: 0 Render date: 2025-04-20T07:36:50.464Z Has data issue: false hasContentIssue false

THE DECOMPOSITION OF PERMUTATION MODULE FOR INFINITE CHEVALLEY GROUPS, II

Published online by Cambridge University Press:  27 December 2024

JUNBIN DONG*
Affiliation:
Institute of Mathematical Sciences ShanghaiTech University Shanghai 201210 China [email protected]

Abstract

Let $\mathbf {G}$ be a connected reductive algebraic group over an algebraically closed field $\Bbbk $ and ${\mathbf B}$ be a Borel subgroup of ${\mathbf G}$. In this paper, we completely determine the composition factors of the permutation module $\mathbb {F}[{\mathbf G}/{\mathbf B}]$ for any field $\mathbb {F}$.

Type
Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Foundation Nagoya Mathematical Journal

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Carter, R. W., Finite Groups of Lie Type: Conjugacy Classes and Complex Characters, Pure Appl. Math., John Wiley and Sons, New York, 1985.Google Scholar
Chen, X. and Dong, J., The permutation module on flag varieties in cross characteristic , Math. Z. 293 (2019), 475484.CrossRefGoogle Scholar
Chen, X. and Dong, J., The decomposition of permutation module for infinite Chevalley groups , Sci. China Math 64 (2021), no. 5, 921930.CrossRefGoogle Scholar
Geck, M., Kazhdan–Lusztig cells and the Murphy basis , Proc. Lond. Math. Soc. 93 (2006), no. 3, 635665.CrossRefGoogle Scholar
Kazhdan, D. and Lusztig, G., Representations of Coxeter groups and Hecke algebras , Invent. Math. 53 (1979), 165184.CrossRefGoogle Scholar
Putman, A. and Snowden, A., The Steinberg representation is irreducible , Duke Math. J. 172 (2023), 775808.CrossRefGoogle Scholar
Serre, J. P., Linear Representations of Finite Groups, GTM, 42, Springer-Verlag, New York–Heidelberg, 1977.CrossRefGoogle Scholar
Xi, N., Some infinite dimensional representations of reductive groups with Frobenius maps , Sci. China Math. 57 (2014), 11091120.CrossRefGoogle Scholar
Yang, R., Irreducibility of infinite dimensional Steinberg modules of reductive groups with Frobenius maps , J. Algebra 533 (2019), 1724.CrossRefGoogle Scholar