Article contents
COMPOSITION OPERATORS ON WIENER AMALGAM SPACES
Published online by Cambridge University Press: 08 March 2019
Abstract
For a complex function $F$ on $\mathbb{C}$, we study the associated composition operator $T_{F}(f):=F\circ f=F(f)$ on Wiener amalgam $W^{p,q}(\mathbb{R}^{d})\;(1\leqslant p<\infty ,1\leqslant q<2)$. We have shown $T_{F}$ maps $W^{p,1}(\mathbb{R}^{d})$ to $W^{p,q}(\mathbb{R}^{d})$ if and only if $F$ is real analytic on $\mathbb{R}^{2}$ and $F(0)=0$. Similar result is proved in the case of modulation spaces $M^{p,q}(\mathbb{R}^{d})$. In particular, this gives an affirmative answer to the open question proposed in Bhimani and Ratnakumar (J. Funct. Anal. 270(2) (2016), 621–648).
- Type
- Article
- Information
- Copyright
- © 2019 Foundation Nagoya Mathematical Journal
References
- 3
- Cited by